COMUNE DI COLLESALVETTI (LI)

Piano di Caratterizzazione Ambientale
Pista Ciclabile Ivo Mancini Via Berlinguer, Loc. Stagno
Report delle indagini eseguite
SITO LI 1148

COMUNE DI COLLESALVETTI (LI)

Report delle attività eseguite

Relazione Tecnica

A cura:

Rev00	Luglio 2022	EMISSIONE	Marco Raspolli	Paqui Moschini	
Indice di Rev. Data Descrizione Revisione Preparato Approvato					
Questo documento è di proprietà Ambiente spa che se ne riserva tutti i diritti.					

SOMMARIO

1.	PF	REMESSA
	1.1	CRONISTORIA E DOCUMENTAZIONE DI RIFERIMENTO
	1.2	LOCALIZZAZIONE, TIPOLOGIA E USO DEL SITO
2.	RI	SULTATI DELLA CARATTERIZZAZIONE ESEGUITA
	2.1	CAMPIONAMENTO DEL TERRENO
	2.2	CAMPIONAMENTO DELLE ACQUE SOTTERRANEE
	2.3	RILIEVO FREATIMETRICO14
3.	RI	SULTATI16
	3.1	CARATTERISTICHE STRATIGRAFICHE ED IDROGEOLOGICHE DEL SITO
	3.2	QUALITA' DEI TERRENI
	3.1	QUALITA' DELLE ACQUE SOTTERRANEE50
4.	MC	DDELLO CONCETTUALE52
	4.1	TIPOLOGIA ED ESTENSIONE DELLA CONTAMINAZIONE
	4.2	SORGENTI DI CONTAMINAZIONE53
	4.3	PERCORSI DI MIGRAZIONE
	4.4	POTENZIALI BERSAGLI
5	CC	DNCLUSIONI

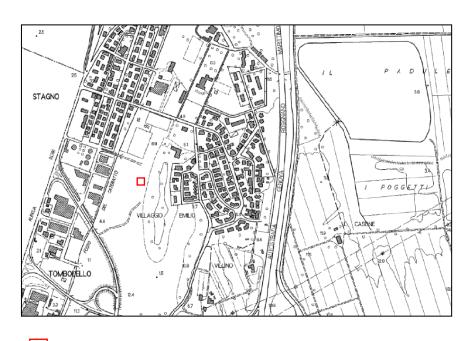
ALLEGATI

Allegato 1: Tavole
Allegato 2: Comunicazioni
Allegato 3: RdP terreni
Allegato 4: RdP acque sotterranee
Allegato 5: RdP certificazione rifiuto

1. PREMESSA

Il presente documento costituisce il report delle indagini di caratterizzazione approvate dal Comune di Collesalvetti in data 12/08/2022 con Determina n. 540 eseguite all'interno dell'area di proprietà del Comune di Collesalvetti, ubicata in Via Berlinguer loc. Stagno, trasmesso agli EE.PP. in data 01/07/2021. In occasione dei lavori di .manutenzione delle barre dell'oleodotto di proprietà ENI eseguiti nel giugno 2021 (comunicazione di inizio lavori del 26/02/2021 prot.GOL/mao 53/2021) sono stati riscontrati superamenti delle concentrazioni soglia di contaminazione nei terreni campionati dalle pareti dello scavo realizzato per le opere di manutenzione. Il Comune di Collesalvetti, in qualità di "soggetto interessato non responsabile della contaminazione", responsabile della gestione del patrimonio pubblico e proprietario dell'area in oggetto, ai sensi del comma 2 dell'art.245 e ai sensi del comma 1 dell'art.242 del D.Lgs 152/2006 e ss.mm.ii. del D.Lgs 152/2006 e ss.mm.ii., ha comunicato agli EE.PP. il superamento della soglia di contaminazione per la "matrice suolo" con lettera di notifica trasmessa in data 01/06/2021 per il sito ubicato in via Berlinguer a Stagno, nel Comune di Collesalvetti, censito catastalmente al Foglio 27, Particella 2255 con lettera di Notifica trasmessa in data 01/06/2021. Il presente documento recepisce il parere Arpat del Dipartimento di Livorno del 26/07/2021 il quale visto che l'area è stata in anni passati oggetto di riempimenti terrigeni provenienti da zone diverse in quanto nata come area depressa e che nei terreni degli scavi, effettuati per i lavori all'oleodotto ENI, sono stati ritrovati materiali di origine antropica contenenti amianto, ritiene che:

- ➤ sia necessario effettuare almeno 18 punti di indagine per i terreni insaturi (un punto ogni 2.500 m2) a copertura di tutta l'area del sito;
- > sia necessario effettuare almeno 5 piezometri a copertura di tutta l'area del sito, dei quali due da ubicare in prossimità del Fosso del Cateratto;
- > sia preferibile eseguire i punti d'indagine dei terreni tramite scavi e non mediante sondaggi, al fine di una ricerca più efficace di eventuali materiali di riporto di origine antropica e/o rifiuti interrati;
- > sia necessario ricercare anche i parametri Amianto, Diossine e Furani, Fitofarmaci e Idrocarburi leggeri C<12 nei campioni di terreni;
- > sia necessario ricercare anche i parametri PCB, Diossine e Furani nei campioni di acque sotterranee;
- ➤ in caso di rinvenimento di materiali di riporto sia necessario effettuare anche il test di cessione secondo la metodologia prevista dal DM 5 febbraio 1998


Sulla base delle prescrizioni del Dipartimento Arpat d Livorno, in data 20/10/2021 il Comune di Collesalvetti ha trasmesso il documento "Piano della caratterizzazione aggiornato con recepimento delle prescrizioni Arpat".

1.1 CRONISTORIA E DOCUMENTAZIONE DI RIFERIMENTO

- 26/02/2021 prot.GOL/mao 53/2021 ENI SpA comunicazione inizio lavori trivellazione controllata (TOC) di due tratti in parallelo degli oleodotti Livorno-Calenzano (FI) DN200 (8") Tronco Livorno-Grecciano:
- 21/04/2021 prot. 106N02/L-GEN/0683/21 Techfem, comunicazione di rinvenimento dimateriale di natura differente rispetto alla matrice presente;
- 01/06/2021 prot. 10071 Comune di Collesalvetti, notifica ai sensi dell'art. 242 del D.lgs 152/06 e ss.mm.ii. Attuazione di misure di prevenzione;
- 31/05/2021 prot.GOL/mao 53/2021 ENI SpA autorizzazione n.16/2020 del 30/11/2020 Comune di Collesalvetti –invio report di attività di campionamento e rapporti di prova
- 04/06/2021 Comune di Collesalvetti, notifica ai sensi dell'art. 242 del D.lgs 152/06 e ss.mm.ii.
 richiesta di campionamento in contraddittorio prima del tombamento dell'area di scavo per motivi di sicurezza al fine di evitare possibili manomissioni delle condotte in esercizio;
- 10/06/2021 esecuzione di campionamento in contraddittorio tra il Comune di Collesalvetti ed i tecnici del Dipartimento Arpat di Livorno (vedi Verbale di acquisizione in campo Arpat n.20210610-00613-1);
- 01/07/2021 Comune di Collesalvetti, trasmissione del report Piano della caratterizzazione;
- 14/07/2021 Azienda USL Toscana Nord-Ovest, parere in merito al PDC trasmesso; Regione Toscana, parere in merito al PDC trasmesso;
- 26/07/2021 Dipartimento Arpat Livorno, parere in merito al documento PDC trasmesso;
- 12/08/2021 Comune di Collesalvetti, trasmissione determina di approvazione del PDC n. 540 del 12/08/2021;
- 20/10/2021, Comune di Collesalvetti trasmissione del report di aggiornamento del Piano della Caratterizzazione;
- 10/03/2022 prot. 4848: Comunicazione inizio lavori Piano Caratterizzazione sito LI-1148, ubicato in via Berlinguer a Stagno (LI);
- 11/03/2022: richiesta picchettamento oleodotto Livorno -Calenzano (FI) DN 200 (8"), Tronco Livorno-Grecciano, nell'area della pista ciclistica Ivo Mancini sita in via Berlinguer a Stagno (LI).

1.2 LOCALIZZAZIONE, TIPOLOGIA E USO DEL SITO

Il sito è ubicato ad est del paese di Stagno all'interno della pianura posta a sud del canale scolmatore e compreso tra la raffineria ENI e la Via Aurelia ad una quota di circa 5,0m sul livello del mare. In figura 1 si mostra il sito di interesse:

Scavo ENI SpA

FIGURA 1 -PLANIMETRIA CON INDICATO LO SCAVO ENI PER LA MANUTENZIONE DELLE BARRE DELL'OLEODOTTO

Come si vede dalla figura successiva l'area è localizzato nella planimetria catastale del comune di Collesalvetti nel Foglio n° 27 particelle n° 2255.

FIGURA 2 - UBICAZIONE DEL SITO IN OGGETTO SU STRALCIO DI MAPPA CATASTALE

Da estratto di mappa catastale il sito occupa un'area di circa 46.000 mq. Come inserito nel parere Arpat del 27/07/2021 la particella è stata suddivisa in maglie omogenee 50x50m; all'interno di ogni area è previsto un punto di indagine nei terreni insaturi.

2. RISULTATI DELLA CARATTERIZZAZIONE ESEGUITA

Nel periodo 30 marzo - 11 aprile 2022 sono state eseguite le attività di caratterizzazione indicate nel report trasmesso agli EE.PP. in data 01/07/2021

2.1 CAMPIONAMENTO DEL TERRENO

In funzione all'estensione del sito, pari a circa 46.000 mq, sono stati eseguiti n.18 punti di indagine che hanno raggiunto la profondità di circa 4 m dal p.c.. Gli scavi hanno consentito di prelevare campioni di terreno a due profondità diverse:

- campione superficiale: indicativamente fra 0,0 1,0 metri da piano di campagna;
- un campione profondo prelevato nell'intervallo 1,0 fondo scavo;

In aggiunta a quanto sopra all'interno di alcuni scavi sono stati campionati i riporti (materiali di origine naturale frammisti a materiali di origine antropica), successivamente sottoposti a test di cessione ai sensi del D.M. 5/02/98 così come previsto dal DPR 120/17 ed in corrispondenza dei piezometri è stato campionato il primo metro di profondità.

In tabella successiva si riepiloga i campioni prelevati dagli scavi:

Saggi di scavo/Piezometri	Campioni ambientali		Campioni di riporto	Campioni piezometri
Scavo/i lezometri	Profondità Campione (m)	Profondità Campione (m)	Profondità Campione (m)	Profondità Campione (m)
S1	0-1	1-4,1	0-1	
S2	0-1	1-4,1	0-1 e 1-4,4	
S3	0-1	1-4,4	1-4,4	
S4	0-1	1-3,9		
S5	0-1	1-4,4		
S6	0-1	1-2,7		
S7	0-1	1-3,7	1-3,7	
S8	0-1	1-4,1		

Saggi di scavo/Piezometri	Campioni ambientali		Campioni di riporto	Campioni piezometri
Scavo/i lezometri	Profondità Campione (m)	Profondità Campione (m)	Profondità Campione (m)	Profondità Campione (m)
S9	0-1	1-3,2	0-1 e 1-3,2	
S10	0-1	1-3,7		
S11	0-1	1-4,0	0-1	
S12	0-1	1-3,5	1-3,5	
S13	0-1	1-4,0		
S14	0-1	1-3,7		
S15	0-1	1-4,0	0-1	
S16	0-1	1-3,3	0-1	
S17	0-1	1-3,5		
S18	0-1	1-4,0		
Pz1				0-1
Pz2				0-1
Pz3				0-1
Pz4				0-1
Pz5				0-1

TABELLA 1: INDICAZIONE DEI CAMPIONAMENTI ESEGUITI

Ogni campione per analisi chimiche è stato prelevato in duplice aliquota e conservato a bassa temperatura in contenitori portatili termoisolanti. Per una caratterizzazione più completa del sottosuolo sono stati inoltre prelevati tre campioni di terreno successivamente sottoposti ad analisi granulometrica. I risultati sono descritti nei paragrafi successivi.

Gli scavi sono stati eseguiti con escavatore meccanico ed i terreni posti in cumulo al di sopra di teli in Hdpe. Per ogni singolo scavo sono stati prodotti due cumuli il primo per i terreni superficiali (prof. 0,0-1,0m) ed il secondo per i terreni profondi (prof. 1,0-fondo scavo). Questa operazione ha consentito il controllo visivo dei terreni di escavazione per la verifica di eventuali tipologie di rifiuto presenti. Al termine delle operazioni sono state installate recinzioni a protezione degli scavi eseguiti.

FOTO 1 - TERRENI SU TELO IN HDPE

FOTO 2 - TERRENI SU TELO IN HDPE E RECINZIONE DI CANTIERE

Sul singolo cumulo è stato campionato il terreno formando un medio composito e passato al setaccio 2 cm. Al termine dei campionamenti i cumuli sono stati coperti con telo hdpe in attesa dei risultati delle analisi ed ogni singolo scavo è stato recintato con rete "tipo orsogrill" per mantenere il sito in sicurezza.

FOTO 3 – TERRENI COPERTI DA TELO IN HDPE E SCAVI CON RECINZIONE.

Prima della realizzazione dei cinque piezometri è stato eseguito uno scavo della profondità di 1,0m sui punti dei piezometri per verificare la eventuale presenza di sottoservizi. Negli stessi punti è stato campionato il terreno alla profondità 0-1,0m e lo stesso inserito all'interno di big bags in attesa delle analisi. Tutti i big bags provenienti dalle operazioni di scavo sono stati posizionati in un'area recintata all'interno del sito.

FOTO 4 - SCAVO PER VERIFICA SOTTOSERVIZI ED INSERIMENTO DEI TERRENI ALL'INTERNO DI BIG BAGS

In figura successiva si mostra l'area all'interno del sito dove sono stati posizionati i big bags in attesa delle analisi di caratterizzazione ambientale.

Foto 5 – Area big bags

Gli scavi realizzati sono stati oggetto di rilievo topografico e in Tavola 1 si rappresenta la loro ubicazione.

2.2 CAMPIONAMENTO DELLE ACQUE SOTTERRANEE

La caratterizzazione delle acque sotterranee è stata determinata con l'esecuzione di cinque nuovi piezometri, due dei quali ubicati in prossimità del "Fosso del Cateratto" nel rispetto del parere Arpat Dipartimento di Livorno del 26/07/2021. I piezometri sono stati eseguiti a distruzione di nucleo e le attività sono state realizzate nei giorni 22-23-24 marzo 2022.

FOTO 6 - SONDA PER ESECUZIONE DI PIEZOMETRI

In tabella 2 successiva le caratteristiche delle perforazioni effettuate:

PIEZOMETRI	PROFONDITÀ	TIPO TUBAZIONE	TRATTO CIECO	TRATTO FESSURATO
PIEZOWETRI	piezometro (m)	e diametro	(da m a m)	(da m a m)
PZ1	12	PVC-HD; 4"	0-1	1,0-12,0
PZ2	12	PVC-HD; 4"	0-1	1,0-12,0
PZ3	12	PVC-HD; 4"	0-1	1,0-12,0
PZ4	12	PVC-HD; 4"	0-1	1,0-12,0
PZ5	12	PVC-HD; 4"	0-1	1,0-12,0

TABELLA 2: CARATTERISTICHE DEI PIEZOMETRI ESEGUITI

Il giorno 30/03/2022 è stato svolto il primo campionamento delle acque sotterranee dai piezometri presenti sul sito; il prelievo è stato eseguito in modalità dinamica con pompa sommersa da campionamento. In nessuno dei piezometri realizzati è stata riscontrata presenza di prodotto in galleggiamento. Il campionamento è stato realizzato in contraddittorio con i tecnici del Dipartimento Arpat di Livorno Verbale di acquisizione in campo n. 20220330-00613-1 del 30/03/20221. Ogni campione destinato alle analisi chimiche è stato prelevato e conservato a bassa temperatura in contenitori portatili termoisolanti.

In Tavola 1 si rappresenta l'ubicazione dei piezometri realizzazione.

2.3 RILIEVO FREATIMETRICO

In data 30/03/2022 è stata eseguita la misura dei livelli piezometrici mediante sonda d'interfaccia acqua/olio, in grado di rilevare la presenza di LNAPL (Light Non Aqueous Phase Liquid). Contestualmente è stato eseguito il rilievo plano-altimetrica dei piezometri realizzati.

Punto di	Data di rilievo	Quota topografica	Spessore LNAPL	Livello freatimetrico	Quota
rilievo		(m s.l.m.)	(cm)	(m da p.c.)	freatimetrica
					(m s.l.m.)
PZ1	30/03/2022	3,832	-	3,26	0,572
PZ2	30/03/2022	4,306	-	3,53	0,776
PZ3	30/03/2022	3,401	-	2,72	0,681
PZ4	30/03/2002	3,532	-	2,99	0,542
PZ5	30/03/2022	3,81	-	3,22	0,59

TABELLA 3 - DATI DEL RILIEVO FREATIMETRICO E PLANI-ALTIMETRICO

La falda acquifera soggiacente al sito è ospitata nel livello limoso il cui tetto si trova a circa 4,0 metri da p.c., è sostenuta alla base dalle sottostanti argille limose. Dopo l'allestimento dei piezometri il livello statico delle acque sotterranee è stato misurato tra circa 2,70 e 3,50 metri dal p.c. Dall'elaborazione dei dati del rilievo freatimetrico e plani-altimetrico è stato inoltre determinato che le acque sotterranee defluiscono in direzione Nord-Ovest con un gradiente idraulico medio di circa 0,0023 (0,23 %). In **Tavola 2** è riportata la morfologia della falda intercettata nei piezometri, che è stata elaborata con il software Surfer® for Windows, servendosi della metodologia di interpolazione kriging. Questo strumento permette, tramite il calcolo di un'opportuna funzione chiamata variogramma, che determina la correlazione fra un qualsiasi dato ed i dati ad esso circostanti, l'interpolazione/approssimazione ottimale dei dati tenendo conto della loro natura stocastica.

3. RISULTATI

3.1 CARATTERISTICHE STRATIGRAFICHE ED IDROGEOLOGICHE DEL SITO

Sulla base delle stratigrafie dei sondaggi geognostici realizzati nel sito in esame, è stato possibile ricostruire la colonna litostratigrafica tipo del sito che vede, dall'alto verso il basso, le seguenti tipologie di terreno:

- terreno di riporto/naturale fino a circa 1 metri da p.c.;
- limo sabbioso con ghiaia da circa 1 a circa 3 metri da p.c.;
- limo argilloso grigio con ghiaia da circa 2,5- 4 m.

Le osservazioni di campo circa le caratteristiche stratigrafiche dei terreni attraversati sono anche supportate dalle analisi granulometriche eseguite in laboratorio geotecnico unitamente alla determinazione del peso di volume. Nella seguente **Tabella 4** se ne riepilogano i risultati

Campione	Comparto	Profondità (m da p.c.)	Classificazione A.G.I.	Densità apparente (g/cm³)
88	Suolo	0,0-1,0	Sabbia ghiaiosa	1, 30
\$16	Suolo	1,0-1,3	Sabbia con ghiaia	1,30
\$5	Suolo	1,80-4,40	Sabbia con ghiaia	1,30
\$2	Suolo	1,0-3,0	Sabbia limosa	1,30

TABELLA 4 - RISULTATI CARATTERISTICHE FISICHE DEL SOTTOSUOLO DEL SITO

In Allegato 3 si riportano i referti delle analisi geotecniche di laboratorio.

Di seguito si riportano di seguito le stratigrafie, fotografie ed osservazioni di campagna per ciascuno scavo in ordine.

S1	Data esecuzione	08/04/2022	
	Profondità fondo scavo	4.10 m	
Profondità (m)	Descrizione Stratigrafica	NOTE	
0,0- 1,0 m	Sabbie debolmente limose marroni gialle, con ciottoli e materiale antropico inerte (mattoni).	Campioni prelevati:	
	, , ,	S1 0,0-1,0 m	
1,0 - 2,3m	Limi sabbiosi marroni poco compatti	S1 0,0 -1,0 m campione per test di	
	Argille grigie con grossi massi di dimensioni pluri	cessione	
2,3 – 4,10m	decimetrici e livelli torbosi. Odore di idrocarburi nei terreni di scavo	S1 1,0 - 4,10 m	

S1- cumulo 0-1m

S1- fine scavo

S1- cumulo 1-4.1 m

S2	Data esecuzione	08/04/2022	
	Profondità fondo scavo	4.10 m	
Profondità (m)	Descrizione Stratigrafica	NOTE	
0- 1,9 m	Materiale terrigeno sabbioso con ghiaia, colore marrone. già nel primo metro si	Campioni prelevati: S2 0,0-1,0 m	
	ritrovano materiali antropici come ciottolami, mattoni e asfalto.	S2 0,0-1,0m campione per test di cessione	
1,9 – 3,0 m	materiale limoso nero- torboso, presenza di trovanti	S2 1,0- 4,10 m	
3– 4,10m	di grosse dimensioni e asfalto. argille compatte fino a fondo scavo a metri 4.10	S2 1-4,10m campione per test di cessione	

S2 - cumulo 0-1m

S2 - fine scavo

S2 - cumulo 1-4.1 m

S 3	Data esecuzione	08/04/2022
	Profondità fondo scavo	4.40 m
Profondità (m)	Descrizione Stratigrafica	NOTE
0- 1,0 m	Materiale sabbioso marrone chiaro, trovanti di piccole dimensioni con mattoni, cemento, asfalto a circa 60 cm. Sabbia ghiaiosa grigia con trovanti	Campioni prelevati:
	di grandi dimensioni. Presenza di acqua superficiale.	S3 1-4,40
1,0 – 3,0 m	Materiale sabbioso grigiastro molto umido con trovanti di medie e grandi dimensioni (dimensioni metriche).	S3 1-4,40m campione per test di cessione
	Ad 1,20 m inizio ghiaia rossastra e materiale antropico (mattoni, cemento fogli di plastica). A 1.70 limoso-argilloso torboso nerastro.	
3,0 – 4,40m	Da 2.50 presenza di cemento/asfalto, in particolare nella zona dello scavo vicina alla strada. Presenza di acqua all'interno del saggio.	
	A 3 m inizio argille grigie compatte.	

S3 - cumulo 0-1m

S3 – fine scavo

S3 - cumulo 1-4.4 m

S 4	S4 Data esecuzione	
	Profondità fondo scavo	3.90 m
Profondità (m)	Descrizione Stratigrafica	NOTE
0- 0,9 m	Materiale limoso debolmente sabbioso	Campioni prelevati:
	marrone chiaro.	S4 0,0-1,0 m
0,90- 1,60	argilla grigia con presenza di materiale antropico.	S4 1,0-3,90m
	A prof. 1.50 presenza massicciata	
	ghiaiosa. successivamente limo sabbioso	
	marrone e grigio. A metri 2.50 circolazione	
	di acque superficiali, passaggio ad argille e	
	torba.	
3,0 – 3,90m		
	materiale argilloso- torboso con riporti e	
	materiali di grossa pezzatura (cls).	

S4 - scavo 0-1m

S4 - fine scavo

S4 - cumulo 1-3.9 m

S 5	Data esecuzione	07/04/2022
	Profondità fondo scavo	4.40 m
Profondità (m)	Descrizione Stratigrafica	NOTE
0 - 1,0 m	Materiale sabbioso marrone chiaro con presenza di ciottolame centimetrico, qualche pezzo di plastica mattoni, cemento.	Campioni prelevati: S5 0,0-1,0m
1,4 – 1,8 m	Da 1,40 materiale limoso marrone grigiastro con pochi ciottoli di materiale antropico e trovanti di grandi dimensioni.	S5 1,0-4,40 m
1,8 – 4,40m	Argilla grigio-azzurra compatta ciottoli di oltre 1,0 m, inizio umidità. A circa 3,4 presenza materiale torboso nerastro nelle argille fino a fondo scavo.	

S5 - scavo 0-1m

S5 - fine scavo

S5 - cumulo 1-3.9 m

S6	Data esecuzione	07/04/2022
	Profondità fondo scavo	2.70 m
Profondità (m)	Descrizione Stratigrafica	NOTE
0 - 2,0 m	sabbia limosa color marrone chiaro,	Campioni prelevati: S6 0,0 – 1,0m
2,0 – 2,70m	argille ghiaiose di colore grigio bluastro. A 2 metri di profondità inizio saturo ritrovato materiale antropico (plastica, cls) di dimensioni da decimetrici a metrici. Presenza di falda a 2,60m.	S6 1,0 - 2,70m

S6 - cumulo 0-1m

S6 - fine scavo

S6 - cumulo 1-2.7 m

S 7	Data esecuzione	11/04/2022
	Profondità fondo scavo	3.70 m
Profondità (m)	Descrizione Stratigrafica	NOTE
0 - 1,0 m	Limo sabbioso color marrone chiaro, con presenza di blocchi in cemento	Campioni prelevati: S7 0,0 – 1,0m
2,0 – 3,70m	presenza di materiali di riporto costituiti da ghiaie, inerti da costruzione, asfalto ciottoli e legno il tutto in matrice limosa. Odore di asfalto durante lo scavo.	S7 1,0 - 2,70 m S7 2-3,7m campione per test di cessione

S7 cumulo 0-1 m

S7- fondo scavo

S7 presenza di materiale antropico (asfalto)

S8	Data esecuzione	06/04/2022
	Profondità fondo scavo	3.6 m
Profondità (m)	Descrizione Stratigrafica	NOTE
0 – 0,80 m	materiale terrigeno di colore marrone chiaro con componente argillosa, con materiali da costruzione	Campioni prelevati: S8 0,0 – 1,0 m
0,80 – 3.6 m	Materiale marrone scuro presenza sporadica di blocchi di cemento di dimensioni di 0,5- 1m, ritrovati legni, tubazioni in plastica e materiale inerte (mattoni pluri-centimetrici). A 2,40m materiale limoso rossastro e presenza di legno. A 2,60 maggiore componente argillosa scura con umidità crescente con la profondità. Presenza di acqua di circolazione superficiale a partire da 2,10m	S8 1,0 – 3,6m

S8 - cumulo 0-1m

S8 - fine scavo

S8 - cumulo 1-4.1 m

S9	Data esecuzione	06/04/2022
	Profondità fondo scavo	3,20 m
Profondità (m)	Descrizione Stratigrafica	NOTE
0 - 1,0 m	materiale limo sabbioso color marrone chiaro,	Campioni prelevati:
	con presenza di materiale antropico mattoni, ceramiche;	S9 0,0 – 1,0m
		S9 0,0 - 1,0 campione per test di
1,0 – 3,20m	Materiale argilloso grigio-azzurro con presenza di ghiaia. Da 1,20 presenza asfalto e ciottoli di dimensioni	cessione
	decimetrici e trovanti compresi tra da 0,5-1,0 m. A profondità 2.50m presenza di materiale	S9 1,0 – 3,20 m
	antropico, di tipo plastico, asfalto, ferro plastica	S9 1 – 3,20 campione per test di
	e asfalto in matrice limo argillosa. Odore di	cessione
	idrocarburi nello scavo. Presenza di asfalto sulla parete di sinistra da 1,20 a 2,3m.	

S9 - cumulo 0-1m

S9 - fine scavo

S9 - cumulo 1-3.2 m

S10	Data esecuzione	05/04/2022
	Profondità fondo scavo	3.70 m
Profondità (m)	Descrizione Stratigrafica	NOTE
0 - 0,70 m	Terreno superficiale sabbioso limosa di colore marrone chiaro.	Campioni prelevati: S10 0,0-1,0 m
0,70 - 2,10 m	Sabbia limosa con presenza di ghiaia.	S10 1,0-3,70 m
2,10 – 3,70m	Limo argilloso di color grigio con presenza adi ciottoli di piccole e grandi dimensioni fino ad 1,0 m.	

S10 cumulo 0-1 m

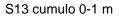
S10- fondo scavo

S10 recinzioni su scavo

S11	Data esecuzione	11/04/2022
	Profondità fondo scavo	4.0 m
Profondità (m)	Descrizione Stratigrafica	NOTE
0 - 2,20 m	Terreno superficiale in matrice limo sabbiosa marrone con trovanti e presenza di scarso materiale di riporto, i trovanti sono riconducibili a materiali da costruzione (mattoni e cemento).	Campioni prelevati: S11 0,0-1,0 m S11 1,0- 4,0 m
2,20 - 4,0 m	Terreno argilloso con torba e materiale di riporto in minime quantità (presenza di teli di nailon e tubi in plastica)	

S11- fondo scavo

S12	Data esecuzione	11/04/2022
	Profondità fondo scavo	3.50 m
Profondità (m)	Descrizione Stratigrafica	NOTE
0 - 1,0 m	Terreno superficiale in matrice limo sabbiosa marrone con all'interno una scarsa percentuale di materiali inerti. Terreno in matrice limosa con	Campioni prelevati: S12 0,0-1,0 m S11 1,0- 3,5 m
1,0 - 3,50 m	abbondanti materiali inerti, laterizi e ciottoli ghiaiosi (presenza di picchetti di ferro e teli di nailon)	S11 1,0-3,5 0m campione per test di cessione


S12 cumulo 0-1 m

S12- fondo scavo

S12- presenza di ghiaia di riporto scura nel cumulo profondo

S13	Data esecuzione	05/04/2022
	Profondità fondo scavo	4.0 m
Profondità (m)	Descrizione Stratigrafica	NOTE
0 - 1,0 m	Terreno superficiale in matrice limo sabbiosa marrone con all'interno una massi ciclopici di dimensione 1m presenza di ghiaia violacea nerastra simile a Scaglia Toscana.	Campioni prelevati: S13 0,0-1,0 m S13 1,0- 4,0 m
1,0 - 4,0 m	Terreno in matrice limo sabbiosa con presenza di trovanti di varie dimensioni Ritrovamento di torba e lignite tra 2,50 e 4,0m	

S13- operazioni di scavo

S13 fondo scavo

S14	Data esecuzione	07/04/2022
	Profondità fondo scavo	3.70 m
Profondità (m)	Descrizione Stratigrafica	NOTE
0 - 2,0 m	Sabbia limosa di colore marrone chiaro. Sabbia limosa con ghiaia presenza di clasti antropici (mattoni, presenza a circa 1.50 di trovanti di grandi dimensioni). A profondità di 2,60 da p.c. limo ed argilla	Campioni prelevati: S14 0,0-1,0 m S14 1,0-3,70 m
2,0 – 3,30m	grigia azzurrastra con trovanti di grandi dimensioni. A 3,20m presenza di materiali antropici (polistirolo) e massi di grandi dimensioni, materiali antropici, manichette, ferro tubi).	
3,30-3,70m	Da 3,30 argilla compatta grigia senza materiali 3,70 il fondo scavo.	

S14 - scavo 0-1m

S14 - fine scavo

S14 - cumulo 1-3.7 m

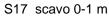
S15	Data esecuzione	07/04/2022
	Profondità fondo scavo	4.0 m
Profondità (m)	Descrizione Stratigrafica	NOTE
0 - 0,80 m	Materiale di riporto costituito da materiali antropici di dimensioni 1,0m , laterizi in matrice sabbioso limosa	Campioni prelevati: S15 0,0 -1,0 m S15 1,0-4,0 m
0,80 – 4,0m	Terreno limo sabbioso grigio con ciottoli ghiaiosi al suo interno, passaggio a sabbia limosa compatta a partire da 2,0m fino a fondo scavo.	S15 1,0-3,50 m prelevato campione per test di cessione

S15 scavo 0-1 m

S15 - cumulo 0-1

S15 fondo scavo

S 16	Data esecuzione	06/04/2022
	Profondità fondo scavo	3.30 m
Profondità (m)	Descrizione Stratigrafica	NOTE
0 - 2,0 m	sabbia limosa marrone chiaro, addensata con presenza di clasti di dimensioni da pluri-centimetrici a metrici. A profondità 1,50m limi sabbiosi grigiastre con presenza di materiale antropico.	Campioni prelevati: S16 0,0 – 1,0 m S16 1,0 - 3,30 S16 0,0 –1,0 m prelevato campione per test di cessione
2,0 – 3,30m	sabbie grigi con materiali antropico e ritrovati legnosi A profondità 3,10m presenza di acqua.	


S16 - cumulo 0-1m

S16 - fine scavo

S16 - cumulo 1-3.3 m

S17	Data esecuzione	04/04/2022
	Profondità fondo scavo	4.0 m
Profondità (m)	Descrizione Stratigrafica	NOTE
0,0 - 1,30 m	Terreno limoso sabbioso color	Campioni prelevati:
		S17 0 - 1
1,30 – 3,50	Terreno limo argilloso marrone grigio	S17 1 - 3,50

S17 fondo scavo

S18	Data esecuzione	04/04/2022	
	Profondità fondo scavo	4.0 m	
Profondità (m)	Descrizione Stratigrafica	NOTE	
0 - 1,40 m	Terreno limoso color marrone con all'interno presenza di laterizi (mattoni).	Campioni prelevati: S18 0,0 – 1,0 m S18 1,0 - 4,0 m	
1,40 – 4,0m	Terreno limoso marrone con orizzonte di terreno grigiastro e presenza di materiali antropico (plastica e laterizi)		

S18 scavo 0-1 m

S18 - cumulo 1-FS

S18 fondo scavo

3.2 QUALITA' DEI TERRENI

Nelle tabelle successive sono esposti i risultati delle determinazioni analitiche eseguite sui campioni di terreno prelevati dagli scavi realizzati. I limiti posizionati nell'ultima colonna della tabella 5 sono relativi alla colonna A (verde pubblico, privato, residenziale) del D.Lgs. 3 aprile 2006, n. 152, Parte IV Titolo V (allegato 5, Tabella 1):

TABELLA 5 - RISULTATI ANALITICI DEI TERRENI DEI SONDAGGI/PIEZOMETRI

	PZ1	PZ2	PZ3	PZ4	PZ5	7
	22/03/22	22/03/22	22/03/22	22/03/22	22/03/22	
	0,0-1,0	0,0-1,0	0,0-1,0	0,0-1,0	0,0-1,0	
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	Terreni ad uso Verde pubblico, privato e residenziale, commerciale e industriale Dlgs152:2006
Parametro						Lim.Sup. 1
Arsenico	5,9	5,7	2,8	5	5,8	20
Berillio	0,38	0,42	0,3	0,39	0,43	2
Cadmio	0,13	1,6	< 0,057	< 0,060	< 0,085	2
Cobalto	5,7	6,5	4,8	8,6	6,9	20
Cromo totale	24	34	15	47	23	150
Cromo (VI)	0,16	0,23	< 0,059	0,11	0,18	2
Mercurio	0,17	0,15	0,035	0,052	0,1	1
Nichel	28	32	14	49	25	120
Piombo	41	170	9,9	13	15	100
Rame	18	29	11	17	15	120
Vanadio	17	19	12	17	18	90
Zinco	67	460	34	39	42	150
Benzo (a) antracene	0,85	0,086	0,0026	0,0028	0,11	0,5
Benzo (a) pirene	0,73	0,039	0,0017	0,00067	0,018	0,1
Benzo (b) fluorantene	1,1	0,1	0,0029	0,0045	0,13	0,5
Benzo (k) fluorantene	0,51	0,049	0,0013	0,0011	0,069	0,5
Benzo (g,h,i) perilene	0,72	0,078	0,0018	0,00095	0,055	0,1
Crisene	0,96	0,089	0,0026	0,0028	0,1	5
Dibenzo (a,e) pirene	0,14	0,014	0,0007	0,00033	0,013	0,1
Dibenzo (a,l) pirene	< 0,0038	< 0,00047	< 0,00013	< 0,00014	< 0,00039	0,1
Dibenzo (a,i) pirene	0,12	0,012	0,00043	0,00015	< 0,00039	0,1
Dibenzo (a,h) pirene	0,027	< 0,00047	< 0,00013	< 0,00014	< 0,00039	0,1
Dibenzo (a,h) antracene	< 0,0038	< 0,00047	< 0,00013	< 0,00014	< 0,00039	0,1
Indeno (1,2,3 - c,d) pirene	0,72	0,071	0,0019	0,0017	0,084	0,1
Pirene	1,3	0,11	0,0031	0,0022	0,092	5
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06	7,1	0,65	0,019	0,017	0,67	10
Alaclor	< 0,0038	< 0,00047	< 0,00013	< 0,00014	< 0,00039	0,01
Aldrin	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	0,01
Atrazina	< 0,0038	< 0,00047	< 0,00013	< 0,00014	< 0,00039	0,01
alfa - esaclorocicloesano	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	0,01
beta - esaclorocicloesano gamma - esaclorocicloesano	< 0,0005 < 0,0005	< 0,0005 < 0,0005	< 0,0005 < 0,0005	< 0,0005 < 0,0005	< 0,0005 < 0,0005	0,01
(Lindano)	,	,	,	,	,	0,01
Clordano (cis, trans)	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	0,01
DDD, DDT, DDE Dieldrin	0,14	0,0091	0,00027	< 0,0005	0,003	0,01
	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	0,01
Endrin Sommatoria diossine e furani	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,01
espressa come tossicità equivalente secondo I-TEF	0,0000006 7	0,00000048	0,0000001	0,000000024	0,00000037	0,00001
1,2,3,4,6,7,8-HpCDD	14	5,2	< 0,100	< 0,11	1,3	.,
1,2,3,4,6,7,8-HpCDF	5,5	3,8	0,43	0,99	0,89	
1,2,3,4,7,8,9-HpCDF	0,52	0,43	< 0,100	0,21	< 0,17	
, , , , , , , , , , , , , , , , , ,				· · · · · · · · · · · · · · · · · · ·		

	PZ1	PZ2	PZ3	PZ4	PZ5	
	22/03/22	22/03/22	22/03/22	22/03/22	22/03/22	
	0,0-1,0	0,0-1,0	0,0-1,0	0,0-1,0	0,0-1,0	
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	Terreni ad uso Verde pubblico, privato e residenziale, commerciale e industriale Dlgs152:2006
1,2,3,4,7,8-HxCDD	< 0,16	< 0,19	< 0,100	< 0,11	< 0,17	
1,2,3,4,7,8-HxCDF	< 0,16	0,46	< 0,100	< 0,11	< 0,17	
1,2,3,6,7,8-HxCDD	< 0,16	< 0,19	< 0,100	< 0,11	< 0,17	
1,2,3,6,7,8-HxCDF	< 0,16	< 0,19	< 0,100	< 0,11	< 0,17	
1,2,3,7,8,9-HxCDD	< 0,16	< 0,19	< 0,100	< 0,11	< 0,17	
1,2,3,7,8,9-HxCDF	< 0,16	< 0,19	< 0,100	< 0,11	< 0,17	
1,2,3,7,8-PeCDD	< 0,16	< 0,19	< 0,100	< 0,11	< 0,17	
1,2,3,7,8-PeCDF	< 0,16	< 0,19	< 0,100	< 0,11	< 0,17	
2,3,4,6,7,8-HxCDF	< 0,16	< 0,19	< 0,100	< 0,11	< 0,17	
2,3,4,7,8-PeCDF	0,79	0,51	< 0,100	< 0,11	< 0,17	
2,3,7,8-TCDD	< 0,032	< 0,038	< 0,020	< 0,023	< 0,035	
2,3,7,8-TCDF	0,24	0,39	< 0,020	< 0,023	< 0,035	
OCDD	43	38	5,4	8,6	14	
OCDF	6,7	6,4	0,43	3,6	1,1	
PCB totali (Aroclor 1242,1248,1254,1260)	0,0011	0,0058	0,000059	0,000098	0,0003	0,06
drocarburi C<=12	< 0,2	< 0,18	< 0,2	< 0,21	< 0,23	10
drocarburi C>12	4,5	4,1	< 1,1	1,5	< 1,7	50
Amianto (ricerca qualitativa)	Assente	Assente	Assente	Assente	Assente	
Amianto (ricerca quantitativa)	< 1000	< 1000	< 1000	< 1000	< 1000	1000

In tabella i risultati dei terreni prelevati durante gli scavi eseguiti sul punto dei piezometri per la ricerca dei sottoservizi. I dati indicano la presenza di superamenti nei terreni del piezometro PZ2 e PZ3. I terreni estratti dagli scavi sono stati posti in big bags in attesa dei risultati analitici. In **Allegato 3** si riportano i certificati analitici dei terreni campionati.

Nelle tabelle successive si riportano i risultati dei campioni di terreno prelevati dagli scavi eseguiti. Alcuni terreni degli scavi eseguiti sono stati campionati in contraddittorio con i tecnici del dipartimento Arpat di Livorno, in **Allegato 2** si riportano i verbali di 20220408-00613-2 del 8/04/22 e 20220406-00613-1 del 6/04/22.

TABELLA 6 - RISULTATI ANALITICI DEI TERRENI CAMPIONATI DALLE TRINCEE ESEGUITE

Parametri/Saggio	S1	S1	S2	S2	S3	S3	S4	S4	limiti
data di prelievo	08/04/22	08/04/22	08/04/22	08/04/22	08/04/22	08/04/22	07/04/22	07/04/22	mmu
profondità di prelievo	0-1 m	1-4,1	0-1	1-4,4	0-1	1-4,4	0-1	1-3,9	
Unità di misura					mg/kg	I		I	J
pH	9	9,1	9	9,1	8,9	9	9,2	9,4	
FOC - frazione di carbonio organico	9,9	9	12	11	9,1	7,4	14	3,5	
Residuo secco a 105°C	89	95	95	89	91	93	98	77	
Arsenico	5,4	8,5	8,3	10	6,9	9,5	6,6	4,9	20
Berillio	0,4	0,98	0,42	1	0,46	0,81	0,36	0,45	2
Cadmio	0,12	< 0,21	0,15	0,25	< 0,11	0,25	0,43	0,1	2
Cobalto	6,8	14	6,6	15	7,9	23	5,8	6,3	20
Cromo totale	28	67	30	76	33	100	22	21	150
Cromo (VI)	0,17	0,48	0,3	0,47	0,27	0,61	0,15	0,15	2
Mercurio	0,14	0,13	0,29	0,29	0,13	0,18	0,084	< 0,045	1
Nichel	34	77	37	92	42	240	21	24	120
Piombo	29	29	50	40	26	37	39	21	100
Rame	24	29	29	37	20	33	17	18	120
Vanadio	16	36	29	38	19	34	16	15	90
Zinco	57	86	69	100	51	93	92	49	150
Benzo (a) antracene	0,021	0,037	1,1	0,07	0,032	0,051	0,0084	0,045	0,5
Benzo (a) pirene	0,02	0,026	1,4	0,12	0,044	0,066	0,0054	0,045	0,1
Benzo (b) fluorantene	0,02	0,019	1,1	0,098	0,022	0,043	0,009	0,034	0,5
Benzo (k) fluorantene	0,021	0,023	0,69	0,073	0,034	0,048	0,0064	0,029	0,5
Benzo (g,h,i) perilene	0,022	0,015	0,77	0,11	0,031	0,043	0,0073	0,021	0,1
Crisene	0,031	0,049	1,6	0,24	0,054	0,084	0,012	0,064	5
Dibenzo (a,e) pirene	0,0053	0,0042	0,097	0,036	0,0063	0,01	0,0011	0,0033	0,1
Dibenzo (a,l) pirene	0,0099	0,0075	0,12	0,064	0,012	0,02	0,0021	0,0067	0,1
Dibenzo (a,i) pirene	0,0043	0,0053	0,2	0,066	0,01	0,014	0,0012	0,0067	0,1
Dibenzo (a,h) pirene	< 0,0011	< 0,0025	0,076	0,025	< 0,0026	< 0,0026	< 0,00023	0,0015	0,1
Dibenzo (a,h) antracene	0,0082	0,0067	0,19	0,025	0,012	0,017	0,0025	0,0088	0,1
Indeno (1,2,3 - c,d) pirene	0,02	0,016	0,51	0,081	0,031	0,047	0,0068	0,019	0,1
Pirene	0,036	0,1	2,1	0,12	0,065	0,1	0,016	0,052	5
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06	0,22	0,31	9,9	1,1	0,35	0,55	0,078	0,34	10
Alaclor	< 0,00021	< 0,00051	< 0,00048	< 0,0011	< 0,00053	< 0,00052	< 0,00023	< 0,00021	0,01
Aldrin	< 0,00021	< 0,00051	< 0,00048	< 0,0011	< 0,00053	< 0,00052	< 0,0005	< 0,0005	0,01
Atrazina	< 0,00021	< 0,00051	< 0,00048	< 0,0011	< 0,00053	< 0,00052	< 0,00023	< 0,00021	0,01
alfa - esaclorocicloesano	< 0,00021	< 0,00051	< 0,00048	< 0,0011	< 0,00053	< 0,00052	< 0,0005	< 0,0005	0,01
beta - esaclorocicloesano	< 0,00021	< 0,00051	< 0,00048	< 0,0011	< 0,00053	< 0,00052	< 0,0005	< 0,0005	0,01
gamma - esaclorocicloesano (Lindano)	< 0,00021	< 0,00051	< 0,00048	< 0,0011	< 0,00053	< 0,00052	0,00073	0,0012	0,01
Clordano (cis, trans)	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	0,01
DDD, DDT, DDE	0,0017	0,0012	0,046	0,093	0,0034	0,0081	0,001	< 0,0005	0,01

REPORT DELLE ATTIVITA' DI CARATTERIZZAZIONE

Parametri/Saggio	S1	S1	S2	S2	S3	S3	S4	S4	limiti
data di prelievo	08/04/22	08/04/22	08/04/22	08/04/22	08/04/22	08/04/22	07/04/22	07/04/22	
profondità di prelievo	0-1 m	1-4,1	0-1	1-4,4	0-1	1-4,4	0-1	1-3,9	
Unità di misura		•	•		mg/kg		•	•	
Dieldrin	< 0,00021	< 0,00051	< 0,00048	< 0,0011	< 0,00053	< 0,00052	< 0,0005	< 0,0005	0,01
Endrin	< 0,00021	< 0,00051	< 0,00048	< 0,0011	< 0,00053	< 0,00052	< 0,001	< 0,001	0,01
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF	0,00000057	0,00000064	0,00000087	0,0000014	0,0000018	0,0000015	0,000000032	0,00000059	0,00001
1,2,3,4,6,7,8-HpCDD	5,4	7,6	12	12	3,9	23	< 0,18	5,1	
1,2,3,4,6,7,8-HpCDF	2,8	2,3	8	5,5	2,2	11	1,6	3,9	
1,2,3,4,7,8,9-HpCDF	< 0,17	< 0,42	0,35	< 0,39	< 0,20	0,63	< 0,18	0,28	
1,2,3,4,7,8-HxCDD	< 0,17	< 0,42	< 0,20	0,51	< 0,20	0,53	< 0,18	< 0,17	
1,2,3,4,7,8-HxCDF	0,48	0,5	0,73	0,95	0,33	< 0,43	< 0,18	0,57	
1,2,3,6,7,8-HxCDD	0,57	< 0,42	0,83	0,7	< 0,20	1,1	< 0,18	< 0,17	
1,2,3,6,7,8-HxCDF	0,4	< 0,42	< 0,20	0,7	0,25	0,71	< 0,18	0,43	
1,2,3,7,8,9-HxCDD	0,42	< 0,42	1,1	1,1	0,2	1	< 0,18	< 0,17	
1,2,3,7,8,9-HxCDF	< 0,17	< 0,42	< 0,20	< 0,39	< 0,20	< 0,43	< 0,18	< 0,17	
1,2,3,7,8-PeCDD	< 0,17	< 0,42	0,24	< 0,39	< 0,20	< 0,43	< 0,18	< 0,17	
1,2,3,7,8-PeCDF	0,37	< 0,42	< 0,20	0,75	< 0,20	< 0,43	< 0,18	0,44	
2,3,4,6,7,8-HxCDF	0,62	< 0,42	< 0,20	0,55	< 0,20	< 0,43	< 0,18	< 0,17	
2,3,4,7,8-PeCDF	0,3	0,61	0,33	0,86	< 0,20	0,56	< 0,18	0,6	
2,3,7,8-TCDD	< 0,034	< 0,085	< 0,039	0,089	< 0,040	< 0,085	< 0,037	< 0,035	
2,3,7,8-TCDF	0,28	1,2	0,23	1,2	0,17	0,37	< 0,037	0,36	
OCDD	36	65	81	100	24	430	13	41	
OCDF	3,7	2,6	10	6,9	2,2	36	2,5	3,7	
PCB totali (Aroclor 1242,1248,1254,1260)	0	< 0,00063	< 0,0006	< 0,0013	< 0,00066	< 0,00065	0,00023	0,002	0,06
Idrocarburi C<=12	< 0,18	< 0,18	< 0,22	< 0,21	< 0,22	< 0,22	< 0,21	< 0,21	10
Idrocarburi C>12	11	180	13	130	7,6	170	< 1,9	4,9	50
Amianto (ricerca qualitativa)	Assente	Assente	Presente	Assente	Assente	Assente	Assente	Assente	
Amianto (ricerca quantitativa)	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	1000

Parametri/Saggio	S 5	S5	S6	S6	S7	S7	S8	S8	
data di prelievo	07/04/22	07/04/22	06/04/22	06/04/22	11/04/22	11/04/22	06/04/22	06/04/2	
profondità di prelievo	0-1	1-4,4	0-1	1-2,7	0-1	1-3,7	0-1	1-3,6	Lim.Sup
рН	8,6	9,4	9,3	8,6	7,9	8,7	8,6	9,1	
FOC - frazione di carbonio organico	8,5	12	9,5	6,7	4,6	17	12	14	
Residuo secco a 105°C	96	75	93	96	91	95	92	97	
Arsenico	5,4	2,1	4,5	5	9,4	11	5,3	4,6	20
Berillio	0,3	0,21	0,4	0,55	0,45	0,78	0,31	0,29	2
Cadmio	< 0,12	< 0,046	< 0,092	< 0,11	3,8	0,74	< 0,093	0,084	2
Cobalto	4	3,8	8,5	11	7,9	16	5,3	6,4	20
Cromo totale	22	19	19	23	43	66	22	55	150
Cromo (VI)	0,19	0,046	0,14	0,15	0,41	0,6	0,25	0,26	2
Mercurio	0,09	0,037	0,058	< 0,054	0,19	42	0,063	0,061	1
Nichel	15	22	26	32	39	89	23	49	120
Piombo	17	4,4	11	13	540	130	13	16	100
Rame	17	8,2	20	34	19	59	13	14	120
Vanadio	15	8,4	16	17	21	42	14	14	90
Zinco	27	20	46	50	1600	310	33	56	150
Benzo (a) antracene	0,01	0,013	0,0031	0,00065	0,016	0,21	0,041	0,17	0,5
Benzo (a) pirene	0,0055	0,014	0,0023	0,0021	0,026	0,21	0,052	0,16	0,1
Benzo (b) fluorantene	0,011	0,011	0,0059	0,006	0,013	0,14	0,043	0,11	0,5
Benzo (k) fluorantene	0,011	0,0088	0,0056	0,0054	0,015	0,13	0,047	0,11	0,5
Benzo (g,h,i) perilene	0,0084	0,007	0,0054	0,0055	0,017	0,14	0,06	0,077	0,1
Crisene	0,016	0,016	0,0076	0,0069	0,027	0,32	0,059	0,26	5
Dibenzo (a,e) pirene	0,0016	0,0013	0,00063	0,00053	0,0036	0,036	0,0053	0,0098	0,1
Dibenzo (a,l) pirene	0,0028	0,0018	0,00093	0,00045	0,0072	0,065	0,0096	0,02	0,1
Dibenzo (a,i) pirene	0,0018	0,0019	0,00094	0,00081	0,0069	0,08	0,007	0,02	0,1
Dibenzo (a,h) pirene	< 0,00028	< 0,00011	< 0,00023	< 0,00025	< 0,0013	0,033	< 0,0011	< 0,00086	0,1
Dibenzo (a,h) antracene	0,0032	0,0028	0,0014	0,00093	0,0059	0,036	0,012	0,024	0,1
Indeno (1,2,3 - c,d) pirene	0,008	0,0061	0,0039	0,0019	0,015	0,14	0,047	0,064	0,1
Pirene	0,017	0,02	0,007	0,0038	0,032	0,42	0,087	0,29	5
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06	0,095	0,1	0,045	0,035	0,18	2	0,47	1,3	10
Alaclor	< 0,00028	< 0,00011	< 0,00023	< 0,00025	< 0,00027	< 0,00097	< 0,0011	< 0,00086	0,01
Aldrin	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,00027	< 0,00097	< 0,0005	< 0,0005	0,01
Atrazina	< 0,00028	< 0,00011	< 0,00023	< 0,00025	< 0,00027	< 0,00097	< 0,0011	< 0,00086	0,01
alfa - esaclorocicloesano	< 0,0005	< 0,0005	< 0,0005	< 0,0005	0,00027	0,00097	< 0,0005	0,0005	0,01
beta - esaclorocicloesano	< 0,0005	< 0,0005	< 0,0005	< 0,0005	0,00027	0,00097	< 0,0005	0,0005	0,01
gamma - esaclorocicloesano (Lindano)	0,00075	0,00054	< 0,0005	< 0,0005	0,00027	0,00097	< 0,0005	0,0082	0,01
Clordano (cis, trans)	< 0,0001	< 0,0001	< 0,0001	< 0,0001	0,0001	< 0,0001	< 0,0001	< 0,0001	0,01

Parametri/Saggio	S5	S5	S6	S6	S7	S7	S8	S8	
data di prelievo	07/04/22	07/04/22	06/04/22	06/04/22	11/04/22	11/04/22	06/04/22	06/04/2	
profondità di prelievo	0-1	1-4,4	0-1	1-2,7	0-1	1-3,7	0-1	1-3,6	Lim.Sup . 1
DDD, DDT, DDE	0,0011	< 0,0005	0,00051	< 0,0005	0,011	0,0068	< 0,0005	0,0011	0,01
Dieldrin	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,00027	< 0,00097	< 0,0005	< 0,0005	0,01
Endrin	< 0,001	< 0,001	< 0,001	< 0,001	< 0,00027	< 0,00097	< 0,001	< 0,001	0,01
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF	0,0000000 61	0,0000000	0,0000000 13	0,000000 10	0,00000 27	0,00000 95	0,0000000 27	0,00000 02	0,00001
1,2,3,4,6,7,8-HpCDD	1,7	1,1	0,51	< 0,20	15	37	0,87	4,7	
1,2,3,4,6,7,8-HpCDF	1,5	0,36	0,31	< 0,20	11	16	0,74	2,8	
1,2,3,4,7,8,9-HpCDF	< 0,25	< 0,091	< 0,18	< 0,20	0,87	1,7	< 0,18	0,2	
1,2,3,4,7,8-HxCDD	< 0,25	< 0,091	< 0,18	< 0,20	< 0,23	1	< 0,18	< 0,13	
1,2,3,4,7,8-HxCDF	< 0,25	< 0,091	< 0,18	< 0,20	2,3	9,8	< 0,18	0,37	
1,2,3,6,7,8-HxCDD	< 0,25	< 0,091	< 0,18	< 0,20	0,74	2,4	< 0,18	< 0,13	
1,2,3,6,7,8-HxCDF	< 0,25	< 0,091	< 0,18	< 0,20	1,7	3,3	< 0,18	0,32	
1,2,3,7,8,9-HxCDD	< 0,25	< 0,091	< 0,18	< 0,20	0,63	2,1	< 0,18	< 0,13	
1,2,3,7,8,9-HxCDF	< 0,25	< 0,091	< 0,18	< 0,20	0,65	0,47	< 0,18	< 0,13	
1,2,3,7,8-PeCDD	< 0,25	< 0,091	< 0,18	< 0,20	0,3	0,92	< 0,18	< 0,13	
1,2,3,7,8-PeCDF	< 0,25	< 0,091	< 0,18	< 0,20	1,3	6,3	< 0,18	< 0,13	
2,3,4,6,7,8-HxCDF	< 0,25	< 0,091	< 0,18	< 0,20	1,9	2,8	< 0,18	< 0,13	
2,3,4,7,8-PeCDF	< 0,25	< 0,091	< 0,18	< 0,20	2,3	9,4	< 0,18	< 0,13	
2,3,7,8-TCDD	< 0,050	< 0,018	< 0,036	< 0,041	< 0,045	0,085	< 0,037	< 0,026	
2,3,7,8-TCDF	0,1	0,056	< 0,036	< 0,041	2	7,8	< 0,037	< 0,026	
OCDD	16	12	4,7	< 0,41	110	390	9,9	49	
OCDF	2,8	0,88	0,52	< 0,41	11	27	0,97	4,4	
PCB totali (Aroclor 1242,1248,1254,1260)	0,0011	0,001	0,0006	< 0,000062	0,00069	< 0,0012	0,00037	0,0035	0,06
Idrocarburi C<=12	< 0,15	< 0,21	< 0,2	< 0,2	< 0,19	2,9	< 0,2	< 0,15	10
Idrocarburi C>12	< 2,3	2,8	< 1,9	11	7	1800	< 1,8	7,3	50
Amianto (ricerca qualitativa)	Assente	Assente	Assente	Assente	Assente	Present e	Assente	Assente	
Amianto (ricerca quantitativa)	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	1000

Parametri/Saggio	S9	S9	S10	S10	S11	S11	S12	S12	
data di prelievo	06/04/22	06/04/22	05/04/22	05/04/22	11/04/22	11/04/22	11/04/22	11/04/2	
profondità di prelievo	0-1	1-3,2	0-1	1-3,7	0-1	1-4	0-1	1-3,5	Lim.Sup.
рН	9,5	9,1	9,2	8,9	8,8	9,4	9,1	9,4	
FOC - frazione di carbonio organico	17	11	14	13	12	14	9,4	6,1	
Residuo secco a 105°C	98	91	95	81	92	93	92	91	
Arsenico	11	11	10	25	10	29	4,1	6	20
Berillio	0,53	0,45	0,39	0,46	0,51	0,97	0,41	0,62	2
Cadmio	0,25	< 0,098	< 0,11	2,3	0,24	0,33	0,34	0,42	2
Cobalto	8,2	6,4	8,5	9,4	10	18	7,9	9,1	20
Cromo totale	37	29	42	41	38	88	27	30	150
Cromo (VI)	0,48	0,4	0,23	0,37	0,4	0,46	0,18	0,25	2
Mercurio	0,45	0,1	0,085	0,095	1,6	0,58	0,28	0,26	1
Nichel	37	26	56	55	49	100	32	39	120
Piombo	89	19	14	49	84	96	39	73	100
Rame	54	18	15	20	48	54	25	510	120
Vanadio	25	22	20	24	22	48	17	19	90
Zinco	120	38	34	94	130	140	99	340	150
Benzo (a) antracene	0,021	0,014	0,0045	0,43	0,2	0,23	0,017	0,31	0,5
Benzo (a) pirene	0,035	0,033	0,0035	0,46	0,36	0,39	0,02	0,4	0,1
Benzo (b) fluorantene	0,035	0,018	0,0038	0,29	0,21	0,21	0,02	0,25	0,5
Benzo (k) fluorantene	0,029	0,018	0,0059	0,28	0,18	0,2	0,019	0,23	0,5
Benzo (g,h,i) perilene	0,02	0,029	0,0048	0,23	0,26	0,27	0,023	0,21	0,1
Crisene	0,044	0,028	0,0091	0,5	0,22	0,28	0,029	0,34	5
Dibenzo (a,e) pirene	0,002	0,0042	< 0,0013	0,028	0,044	0,049	0,0044	0,046	0,1
Dibenzo (a,l) pirene	0,004	0,0067	0,0017	0,057	0,073	0,075	0,0068	0,088	0,1
Dibenzo (a,i) pirene	0,003	0,0084	< 0,0013	0,062	0,1	0,13	0,0049	0,11	0,1
Dibenzo (a,h) pirene	< 0,00028	< 0,0023	< 0,0013	< 0,0023	0,023	0,043	< 0,0011	0,044	0,1
Dibenzo (a,h) antracene	0,0068	0,0065	0,0019	0,077	0,056	0,076	0,0077	0,087	0,1
Indeno (1,2,3 - c,d) pirene	0,015	0,018	0,0051	0,19	0,23	0,24	0,021	0,22	0,1
Pirene	0,044	0,028	0,0089	1	0,42	0,53	0,035	0,52	5
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06	0,26	0,21	0,049	3,6	2,4	2,7	0,21	2,9	10
Alaclor	< 0,00028	< 0,0023	< 0,0013	< 0,0023	< 0,00050	< 0,00100	< 0,00021	< 0,00053	0,01
Aldrin	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,00050	< 0,00100	< 0,00021	< 0,00053	0,01
Atrazina	0,00028	< 0,0023	< 0,0013	< 0,0023	< 0,00050	< 0,00100	< 0,00021	< 0,00053	0,01
alfa - esaclorocicloesano	< 0,0005	< 0,0005	< 0,0005	< 0,0005	0,00050	< 0,00100	< 0,00021	0,00053	0,01
beta - esaclorocicloesano	< 0,0005	< 0,0005	< 0,0005	< 0,0005	0,00050	< 0,00100	< 0,00021	0,00053	0,01
gamma - esaclorocicloesano (Lindano)	0,0035	< 0,0005	< 0,0005	< 0,0005	0,00050	< 0,00100	< 0,00021	0,00053	0,01
Clordano (cis, trans)	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	0,01
DDD, DDT, DDE	< 0,0005	0,0028	< 0,0005	0,0057	0,022	0,029	0,0006	0,095	0,01

Parametri/Saggio	S9	S9	S10	S10	S11	S11	S12	S12	
data di prelievo	06/04/22	06/04/22	05/04/22	05/04/22	11/04/22	11/04/22	11/04/22	11/04/2	
profondità di prelievo	0-1	1-3,2	0-1	1-3,7	0-1	1-4	0-1	1-3,5	Lim.Sup. 1
Dieldrin	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,00050	0,0013	< 0,00021	< 0,00053	0,01
Endrin	< 0,001	< 0,001	< 0,001	< 0,001	< 0,00050	< 0,00100	< 0,00021	< 0,00053	0,01
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF	0,00000 15	0,000000 16	0,000000 34	0,000000 96	0,00000 75	0,000000 97	0,000000 15	0,00000 18	0,00001
1,2,3,4,6,7,8-HpCDD	14	1,8	1,8	4,6	160	5,4	1,6	12	
1,2,3,4,6,7,8-HpCDF	9,9	1,4	2,5	5,9	15	8,6	1,3	11	
1,2,3,4,7,8,9-HpCDF	0,75	< 0,19	< 0,21	0,54	1,1	2	< 0,17	0,9	
1,2,3,4,7,8-HxCDD	0,37	< 0,19	< 0,21	< 0,17	0,4	< 0,43	< 0,17	< 0,23	
1,2,3,4,7,8-HxCDF	1,4	< 0,19	0,36	1,3	1,8	1	< 0,17	1,8	
1,2,3,6,7,8-HxCDD	0,62	< 0,19	< 0,21	< 0,17	3,2	< 0,43	< 0,17	0,81	
1,2,3,6,7,8-HxCDF	0,85	< 0,19	0,24	0,89	1,8	0,99	< 0,17	1,3	
1,2,3,7,8,9-HxCDD	0,45	< 0,19	< 0,21	< 0,17	1,1	< 0,43	< 0,17	0,39	
1,2,3,7,8,9-HxCDF	0,47	< 0,19	< 0,21	< 0,17	0,57	< 0,43	< 0,17	< 0,23	
1,2,3,7,8-PeCDD	< 0,24	< 0,19	< 0,21	< 0,17	0,43	< 0,43	< 0,17	< 0,23	
1,2,3,7,8-PeCDF	0,59	< 0,19	< 0,21	1,1	1	0,59	< 0,17	0,96	
2,3,4,6,7,8-HxCDF	1,4	< 0,19	0,35	0,93	2,2	1,1	< 0,17	1,4	
2,3,4,7,8-PeCDF	0,99	0,2	0,3	0,68	1,8	0,55	0,2	1,4	
2,3,7,8-TCDD	< 0,048	< 0,037	< 0,042	< 0,035	0,062	< 0,086	< 0,034	< 0,045	
2,3,7,8-TCDF	0,85	0,16	0,19	0,97	1,1	0,64	0,11	1,3	
OCDD	110	16	21	40	3300	88	13	84	
OCDF	9,2	1,3	5,8	6	33	43	2,1	15	
PCB totali (Aroclor 1242,1248,1254,1260)	0.00007 1	0,0081	0,00039	0,002	0,03	0,19	0	0,052	0,06
Idrocarburi C<=12	< 0,17	< 0,14	< 0,17	< 0,16	< 0,2	< 0,18	< 0,17	< 0,22	10
Idrocarburi C>12	8,3	14	< 2,1	5,2	39	52	9,6	27	50
Amianto (ricerca qualitativa)	Assente	Assente	Assente	Assente	Assente	Assente	Assente	Assente	
Amianto (ricerca quantitativa)	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	1000

Parametri/Saggio	S13	S13	S14	S14	S15	S15	
data di prelievo	05/04/22	05/04/22	07/04/22	07/04/22	05/04/22	05/04/22	
profondità di prelievo	0-1	14	0-1	1-3,7	0-1	1-4	Lim.Sup. 1
Unità di misura		I		mg/kg			
рН	9,2	8,9	8,2	9,2	9,1	9,2	
FOC - frazione di carbonio organico	16	21	16	15	14	14	
Residuo secco a 105°C	92	94	88	94	96	92	
Arsenico	16	29	9,2	5	7	23	20
Berillio	0,43	0,67	0,63	0,4	0,36	0,68	2
Cadmio	< 0,087	0,32	< 0,13	0,4	0,3	< 0,12	2
Cobalto	7	12	12	7,1	19	12	20
Cromo totale	27	42	38	30	31	43	150
Cromo (VI)	0,36	0,42	0,31	0,14	0,24	0,27	2
Mercurio	0,11	0,23	0,91	0,068	0,24	0,11	1
Nichel	29	47	41	31	36	47	120
Piombo	20	52	29	21	54	23	100
Rame	36	140	28	34	35	31	120
Vanadio	23	34	27	17	29	32	90
Zinco	65	180	68	65	85	62	150
Benzo (a) antracene	0,014	0,0085	0,0074	0,025	0,079	0,28	0,5
Benzo (a) pirene	0,01	0,017	0,0022	0,027	0,12	0,39	0,1
Benzo (b) fluorantene	0,0098	0,0078	0,0086	0,02	0,054	0,26	0,5
Benzo (k) fluorantene	0,015	0,011	0,0071	0,022	0,076	0,27	0,5
Benzo (g,h,i) perilene	0,016	0,012	0,0025	0,017	0,081	0,34	0,1
Crisene	0,022	0,021	0,012	0,041	0,14	0,37	5
Dibenzo (a,e) pirene	0,0021	< 0,003	0,0008	0,0037	0,0097	0,037	0,1
Dibenzo (a,l) pirene	0,0036	0,0041	0,002	0,0047	0,016	0,053	0,1
Dibenzo (a,i) pirene	0,0026	< 0,003	0,00084	0,0076	0,02	0,063	0,1
Dibenzo (a,h) pirene	< 0,001	< 0,003	< 0,0003	0,0028	< 0,0048	< 0,0028	0,1
Dibenzo (a,h) antracene	0,0042	0,0045	0,0024	0,0056	0,02	0,081	0,1
Indeno (1,2,3 - c,d) pirene	0,013	0,0097	0,006	0,016	0,061	0,3	0,1
Pirene	0,033	0,019	0,011	0,051	0,16	0,62	5
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06	0,15	0,11	0,063	0,24	0,84	3,1	10
Alaclor	< 0,001	< 0,003	< 0,0003	< 0,0011	< 0,0048	< 0,0028	0,01
Aldrin	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	0,01
Atrazina	< 0,001	< 0,003	< 0,0003	< 0,0011	< 0,0048	< 0,0028	0,01
alfa - esaclorocicloesano	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	0,01
beta - esaclorocicloesano	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	0,01
gamma - esaclorocicloesano (Lindano)	< 0,0005	< 0,0005	< 0,0005	0,0014	0,005	0,0046	0,01
Clordano (cis, trans)	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	0,01
DDD, DDT, DDE	0,001	0,0045	0,0034	0,0067	< 0,0005	0,0068	0,01
Dieldrin	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	0,01
Endrin	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,01

Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF	0,00000016	0,0000013	0,00000013	0,0000031	0,0000012	0,000000027	0,00001
1,2,3,4,6,7,8-HpCDD	1,7	7,1	3,1	7,5	12	1	
1,2,3,4,6,7,8-HpCDF	1,1	7,3	2,1	9,2	5,7	0,53	
1,2,3,4,7,8,9-HpCDF	< 0,16	0,61	< 0,25	0,65	0,31	< 0,23	
1,2,3,4,7,8-HxCDD	< 0,16	0,44	< 0,25	0,73	< 0,20	< 0,23	
1,2,3,4,7,8-HxCDF	< 0,16	1,3	< 0,25	1,7	1,4	< 0,23	
1,2,3,6,7,8-HxCDD	< 0,16	0,73	< 0,25	1,1	< 0,20	< 0,23	
1,2,3,6,7,8-HxCDF	< 0,16	1,1	0,26	1,8	0,7	< 0,23	
1,2,3,7,8,9-HxCDD	< 0,16	< 0,25	< 0,25	0,78	< 0,20	< 0,23	
1,2,3,7,8,9-HxCDF	< 0,16	< 0,25	< 0,25	< 0,20	< 0,20	< 0,23	
1,2,3,7,8-PeCDD	< 0,16	< 0,25	< 0,25	0,66	< 0,20	< 0,23	
1,2,3,7,8-PeCDF	< 0,16	0,57	< 0,25	1,7	0,91	< 0,23	
2,3,4,6,7,8-HxCDF	0,18	1,5	< 0,25	1,9	0,72	< 0,23	
2,3,4,7,8-PeCDF	0,18	0,94	< 0,25	2,6	0,88	< 0,23	
2,3,7,8-TCDD	< 0,032	< 0,049	< 0,050	0,25	< 0,040	< 0,046	
2,3,7,8-TCDF	0,079	0,9	0,12	1,7	0,95	< 0,046	
OCDD	16	47	33	34	100	11	
OCDF	1,3	5,5	3,1	6,6	6,6	0,59	
PCB totali (Aroclor 1242,1248,1254,1260)	0,00039	0,0024	0,0013	0,0017	0,003	0,0061	0,06
Idrocarburi C<=12	< 0,19	< 0,2	< 0,19	< 0,15	< 0,16	< 0,18	10
Idrocarburi C>12	< 1,7	11	< 2,6	6,8	7,2	4,3	50
Amianto (ricerca qualitativa)	Assente	Assente	Assente	Assente	Assente	Assente	
Amianto (ricerca quantitativa)	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	1000

Parametri/Saggio	S16	S16	S17	S17	S18	S18	
data di prelievo	06/04/22	06/04/22	04/04/22	04/04/22	04/04/22	04/04/22	
profondità di prelievo	0-1	1-3,3	0-1	1-3,5	0-1	01-apr	Lim.Sup. 1
рН	8,9	9,5	8,4	7,4	7,9	8,7	
FOC - frazione di carbonio organico	15	14	7,8	8,5	5,4	4,1	
Residuo secco a 105°C	96	85	98	100	99	100	
Arsenico	4,3	11	6,3	4,5	9,8	7,2	20
Berillio	0,23	0,53	0,34	0,61	0,56	0,57	2
Cadmio	< 0,13	0,11	< 0,16	< 0,14	< 0,14	0,16	2
Cobalto	6,5	10	5,1	20	11	14	20
Cromo totale	21	31	31	100	33	38	150
Cromo (VI)	0,23	0,19	0,29	0,23	0,37	0,21	2
Mercurio	0,16	0,13	0,23	0,085	0,091	0,84	1
Nichel	15	37	28	110	45	56	120
Piombo	36	30	42	18	14	160	100
Rame	30	36	34	52	22	110	120
Vanadio	14	23	19	27	23	22	90
Zinco	39	80	45	74	52	97	150
Benzo (a) antracene	0,013	0,025	0,02	0,0004	0,19	0,081	0,5
Benzo (a) pirene	0,022	0,04	0,03	0,00095	0,21	0,099	0,1
Benzo (b) fluorantene	0,0097	0,024	0,014	0,0015	0,13	0,057	0,5
Benzo (k) fluorantene	0,014	0,024	0,024	0,0017	0,18	0,056	0,5
Benzo (g,h,i) perilene	0,016	0,029	0,023	0,0019	0,15	0,054	0,1
Crisene	0,025	0,046	0,039	0,0031	0,32	0,12	5
Dibenzo (a,e) pirene	0,0038	0,004	0,0044	0,00037	0,025	0,0086	0,1
Dibenzo (a,l) pirene	0,0051	0,0067	0,0066	< 0,00034	0,046	0,016	0,1
Dibenzo (a,i) pirene	0,005	0,0089	0,0044	< 0,00034	0,029	0,02	0,1
Dibenzo (a,h) pirene	< 0,003	< 0,0012	0,0064	0,0017	0,055	0,035	0,1
Dibenzo (a,h) antracene	0,0054	0,0078	0,0074	0,00048	0,047	0,018	0,1
Indeno (1,2,3 - c,d) pirene	0,012	0,022	0,02	0,00081	0,13	0,041	0,1
Pirene	0,027	0,052	0,038	0,0021	0,41	0,18	5
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06	0,16	0,29	0,24	0,015	1,9	0,79	10
Alaclor	< 0,003	< 0,0012	< 0,00031	< 0,000067	< 0,00067	< 0,00028	0,01
Aldrin	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	0,01
Atrazina	< 0,003	< 0,0012	< 0,00031	< 0.000067	< 0,00067	< 0,00028	0,01
alfa - esaclorocicloesano	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	0,01
beta - esaclorocicloesano	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	0,01
gamma - esaclorocicloesano (Lindano)	< 0,0005	0,0025	< 0,0005	< 0,0005	< 0,0005	< 0,0005	0,01
Clordano (cis, trans)	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	0,01
DDD, DDT, DDE	0,0039	0,0072	0,0015	< 0,0005	< 0,0005	< 0,0005	0,01
Dieldrin	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	0,01
Endrin	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	0,01
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF	0,0000004	0,00000026	0,00000044	0,000000041	0,000000031	0,00000013	0,00001

Parametri/Saggio	S16	S16	S17	S17	S18	S18	
data di prelievo	06/04/22	06/04/22	04/04/22	04/04/22	04/04/22	04/04/22	
profondità di prelievo	0-1	1-3,3	0-1	1-3,5	0-1	01-apr	Lim.Sup. 1
1,2,3,4,6,7,8-HpCDD	4,7	2,6	3	1,1	1,3	1,2	
1,2,3,4,6,7,8-HpCDF	5,6	4,4	3,9	< 0,29	0,59	1	
1,2,3,4,7,8,9-HpCDF	< 0,26	< 0,18	< 0,33	< 0,29	< 0,26	< 0,31	
1,2,3,4,7,8-HxCDD	< 0,26	< 0,18	< 0,33	< 0,29	< 0,26	< 0,31	
1,2,3,4,7,8-HxCDF	< 0,26	0,18	0,53	< 0,29	< 0,26	< 0,31	
1,2,3,6,7,8-HxCDD	< 0,26	< 0,18	< 0,33	< 0,29	< 0,26	< 0,31	
1,2,3,6,7,8-HxCDF	< 0,26	< 0,18	0,58	< 0,29	< 0,26	< 0,31	
1,2,3,7,8,9-HxCDD	< 0,26	< 0,18	< 0,33	< 0,29	< 0,26	< 0,31	
1,2,3,7,8,9-HxCDF	< 0,26	< 0,18	< 0,33	< 0,29	< 0,26	< 0,31	
1,2,3,7,8-PeCDD	< 0,26	< 0,18	< 0,33	< 0,29	< 0,26	< 0,31	
1,2,3,7,8-PeCDF	< 0,26	< 0,18	0,39	< 0,29	< 0,26	< 0,31	
2,3,4,6,7,8-HxCDF	0,39	< 0,18	< 0,33	< 0,29	< 0,26	< 0,31	
2,3,4,7,8-PeCDF	0,36	0,21	0,33	< 0,29	< 0,26	< 0,31	
2,3,7,8-TCDD	< 0,052	< 0,037	< 0,066	< 0,058	< 0,053	0,08	
2,3,7,8-TCDF	0,24	0,37	0,3	< 0,058	< 0,053	0,14	
OCDD	39	23	34	28	10	8,8	
OCDF	8,2	4	7,9	1,4	1,1	0,95	
PCB totali (Aroclor 1242,1248,1254,1260)	0,00097	0,0014	0,0014	0,000097	< 0,00084	< 0,00035	0,06
Idrocarburi C<=12	< 0,18	< 0,19	< 0,19	< 0,18	< 0,17	< 0,15	10
Idrocarburi C>12	< 2,6	6,6	< 3,4	< 3	< 3	18	50
Amianto (ricerca qualitativa)	Assente	Assente	Assente	Assente	Assente	Assente	
Amianto (ricerca quantitativa)	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	1000

I risultati dei terreni riassunti nelle tabelle sopra riportate indicano la presenza di una contaminazione diffusa nel sito costituita principalmente da metalli (arsenico, cobalto, rame, nichel mercurio, piombo e zinco, Cadmio), IPA e Idrocarburi pesanti, e in alcuni scavi PCB e Pesticidi (DDD, DDT, DDE). La tavola 4 e la tavola 5 indicano gli scavi contaminati ed i relativi superamenti delle CSC di riferimento. La tavola 4 mostra i superamenti del suolo superficiale (prof. 0-1,0). Gli scavi contaminati in questo orizzonte sono confermati anche negli scavi profondi riportati nella Tavola 5 (prof. 1- fondo scavo). I risultati analitici riportati nelle due tavole mostrano una diffusa presenza di IPA e metalli nella maggior parte degli scavi eseguiti e Idrocarburi pesanti nella sola parte NORD nei saggi di scavo S7, S3, S2 e S1. In due unici scavi sono state ritrovate tracce minime di amianto nella ricerca quantitativa (fibre di amosite nello scavo S7 profondo e fibre di crisotilo nello scavo S2 superficiale). Per quanto riguarda il campione S15 prof 0,0-1,0m i cui risultati mostrano una contaminazione da IPA (benzo a-pirene) prossimo al limite di conformità il laboratorio certificato Agrolab ha emesso un nuovo certificato ai sensi del MAN ISPRA 52/2009 con il risultato NON NON-CONFORME. In Allegato 3 si riportano i certificati analitici dei terreni campionati.

Per quanto riguarda i rifiuti prodotti in sito, abbiamo eseguito sui cumuli prodotti due caratterizzazioni distinte sulla base della presenza di idrocarburi:

- la prima per i cumuli S7, S3, S2 e S1;
- la seconda per il resto dei cumuli contaminati;

Le concentrazioni hanno indicato terreni non pericolosi a cui è stato attribuito un codice CER 170504. In **Allegato 5** si riportano i certificati analitici dei terreni campionati.

Di seguito si riportano gli esiti della speciazione MADEP effettuata sui campioni di terreno in cui le concentrazioni di Idrocarburi (leggeri e pesanti) sono risultate superiori alle CSC di riferimento limite di rilevabilità strumentale.

Campiona	Profondità		Frazioni di le Alifa		Frazioni di Idrocarburi Aromatici			
Campione	(m da p.c.)	C5-C8	C9-C12	C13-18	C19-C36	C9-C10	C11-C12	C13-C22
Unità d	i misura							
S1	1,0- 4,1	<0,5	<0,5	14	76	<0,5	<0,05	0,38
S2	1,0-4,4	<0,5	<0,5	15	100	<0,5	<0,05	1,4
S 3	1,0-4,4	<0,5	<0,5	23	120	<0,5	<0,05	0,89
S7	3,0-4,0	0,4	2,6	560	1100	<0,5	<0,05	1,22

TABELLA 7 - RISULTATI SPECIAZIONE MADEP NEGLI IDROCARBURI DEI TERRENI

Nelle tabelle successive sono esposti i risultati delle determinazioni analitiche eseguite sui campioni di terreno prelevati da alcuni scavi, in quanto era presente una frazione di materiale di riporto eterogenea di origine antropica, costituita da residui e scarti di produzione. La verifica delle matrici ambientali di riporto al fine di escludere i rischi di contaminazione delle acque sotterranee sono :

- <u>Test di cessione</u> effettuato secondo le **metodiche** di cui al decreto del Ministro dell'ambiente del 5 febbraio 1998;
- <u>Parametri e Limiti</u> previsti dal **test di cessione** (decreto del Ministro dell'ambiente del 5 febbraio 1998)

TABELLA 8 - RISULTATI TEST DI CESSIONE TERRENI

Parametri/Saggio	u.m.	S1	S2	S2	\$3	S7	S9	
data di prelievo		08/04/22	08/04/22	08/04/22	08/04/22	11/04/22	06/04/22	Limiti
profondità di prelievo	m	0-1	0-1	1-4.4	1-4.4	1-3.7	0-1	
Conducibilità	μS/cm	197	192	361	441	309	101	
Nitrati	mg/l	0,46	0,6	0,52	< 0,1	0,72	0,66	50
Fluoruri	mg/l	0,67	0,48	0,56	0,54	0,83	0,65	1,5
Solfati	mg/l	4,5	4,6	54	67	40	6,3	250
Cloruri	mg/l	0,78	0,66	2,5	4	0,68	0,61	100
Cianuri	μg/l	< 10	< 10	< 10	< 10	< 10	< 10	50
Bario	mg/l	< 0,050	< 0,050	< 0,050	< 0,050	0,14	0,093	1
Rame	mg/l	0,0053	< 0,0050	< 0,0050	< 0,0050	< 0,0050	0,014	0,05
Zinco	mg/l	< 0,020	< 0,020	< 0,020	< 0,020	< 0,020	0,031	3
Berillio	μg/l	< 0,40	< 0,40	< 0,40	< 0,40	< 0,40	< 0,40	10
Cobalto	μg/l	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	250
Nichel	μg/l	9,7	7,5	8	12	6,1	9,9	10
Vanadio	μg/l	< 5,0	6,7	< 5,0	5,6	< 5,0	18	250
Arsenico	μg/l	1,2	2,1	2	3,4	< 1,0	5,1	50
Cadmio	μg/l	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	5
Cromo totale	μg/l	17	15	14	14	13	18	50
Piombo	μg/l	1,8	2,5	1,3	< 1,0	< 1,0	13	50
Selenio	μg/l	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	10
Mercurio	μg/l	< 0,10	< 0,10	< 0,10	< 0,10	< 0,10	< 0,10	1
Amianto (ricerca	mg/l	< 10	< 10	< 10	< 10	< 10	< 10	30
Richiesta chimica di	mg/l	16	10	18	27	9,4	8,5	30
pH (upH)	μрН	7,71	7,99	7,67	8,09	7,54	8,14	12

Parametri/Saggio	um	S9	S11	S12	S15	S16	
data di prelievo		06/04/22	11/04/22	11/04/2022	05/04/22	06/04/22	Limiti
profondità di prelievo	m	1-3.2	0-1	1-3.5	0-1	0-1	
Conducibilità	μS/cm	224	629	426	188	184	
Nitrati	mg/l	0,28	0,11	< 0,1	0,37	0,26	50
Fluoruri	mg/l	1,2	0,51	0,77	0,55	0,67	1,5
Solfati	mg/l	16	130	52	25	45	250
Cloruri	mg/l	4,8	14	12	2,7	3,1	100
Cianuri	μg/l	< 10	< 10	< 10	< 10	< 10	50
Bario	mg/l	< 0,050	0,12	0,17	0,054	< 0,050	1
Rame	mg/l	< 0,0050	< 0,0050	0,56	0,013	< 0,0050	0,05
Zinco	mg/l	< 0,020	< 0,020	0,27	0,022	< 0,020	3
Berillio	μg/l	< 0,40	< 0,40	1,1	< 0,40	< 0,40	10

Parametri/Saggio	um	S9	S11	S12	\$15	S16	
data di prelievo		06/04/22	11/04/22	11/04/2022	05/04/22	06/04/22	Limiti
profondità di prelievo	m	1-3.2	0-1	1-3.5	0-1	0-1	
Cobalto	μg/l	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	250
Nichel	μg/l	< 2,0	10	27	6,9	2,6	10
Vanadio	μg/l	< 5,0	< 5,0	77	32	6,9	250
Arsenico	μg/l	< 1,0	2,1	20	5,3	1,9	50
Cadmio	μg/l	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	5
Cromo totale	μg/l	< 5,0	12	52	12	< 5,0	50
Piombo	μg/l	< 1,0	1,1	67	8,7	3,2	50
Selenio	μg/l	< 1,0	< 1,0	2,8	< 1,0	1,1	10
Mercurio	μg/l	< 0,10	< 0,10	0,28	< 0,10	< 0,10	1
Amianto (ricerca quantitativa)	mg/l	< 10	< 10	< 10	< 10	< 10	30
Richiesta chimica di ossigeno (COD)	mg/l	8,4	26	37	19	13	30
pGH (upH)	μрН	7,61	7,41	8,87	8,1	8,03	12

I risultati riportati in tabelle indicano presenza di superamenti nei campioni di terreno S3 (prof1-4,40m) per il parametro Nichel e S12 (prof 1-3,50m) per i parametri rame, nichel, piombo, cromo tot e cod. I valori riscontrati sono molto vicino ai limiti di riferimento. In **Allegato 3** si riportano i certificati analitici dei terreni campionati.

3.1 QUALITA' DELLE ACQUE SOTTERRANEE

Nella tabella 6 successiva sono esposti i risultati delle determinazioni analitiche eseguite sui campioni di acque sotterranee prelevati dai piezometri realizzati. I valori limite sono riferiti alla tabella 2 del D.Lgs. 152/2006 Allegato 5, Parte IV.

data di prelievo		30.03.2022	30.03.2022	30.03.2022	30.03.2022	30.03.2022	
Parametro/Piezometro		PZ1	PZ2	PZ3	PZ4	PZ5	
	U.M.						Valore limite
Arsenico (As)	μg/l	4,13	3,02	1,03	8,5	1,69	10
Berillio (Be)	μg/l	<0,40	<0,40	<0,40	<0,40	<0,40	4
Cadmio (Cd)	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	5
Cobalto (Co)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	50
Cromo totale (Cr)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	50
Cromo VI	μg/l	<0,50	<0,50	<0,50	<0,50	<0,50	5
Ferro (Fe)	μg/l	1170	550	140	124	149	200
Manganese (Mn)	μg/l	1790	1180	610	1420	1240	50
Mercurio (Hg)	μg/l	<0,10	<0,10	<0,10	<0,10	<0,10	1
Nichel (Ni)	μg/l	15,8	2,48	<0,400	0,92	<0,400	20
Piombo (Pb)	μg/l	<1,0	<1,0	<1,0	<1,0	<1,0	10
Rame (Cu)	μg/l	<5,0	<5,0	<5,0	<5,0	<5,0	1000
Zinco (Zn)	μg/l	<20	<20	<20	<20	<20	3000
Cianuri liberi	μg/l	<10	<10	<10	<10	<10	50
Fluoruri	μg/l	369	411	2370	234	523	1500
Benzene	μg/l	0,0145	0,53	<0,010	<0,010	0,0118	1
Etilbenzene	μg/l	<0,010	<0,010	<0,010	<0,010	<0,010	50
m+p-Xilene	μg/l	<0,020	0,53	<0,020	0,0207	<0,020	10
Stirene	μg/l	<0,010	<0,010	<0,010	<0,010	<0,010	25
Toluene	μg/l	<0,050	0,069	<0,050	<0,050	<0,050	15
1,1,2,2-Tetracloroetano	μg/l	<0,0050	<0.0050	<0.0050	<0,0050	<0,0050	0,05
1.1.2-Tricloroetano	μg/l	<0,010	<0,010	<0.010	<0,010	<0,010	0,2
1,1-Dicloroetano	μg/l	<0,010	<0,010	<0,010	<0,010	<0,010	810
1,1-Dicloroetilene	μg/l	<0,0050	<0,0050	<0,0050	<0,0050	<0,0050	0,05
1,2,3-Tricloropropano	μg/l	<0,00050	<0,00050	<0,00050	<0,00050	<0,00050	0,001
1,2-Dibromoetano	μg/l	<0,00050	<0,00050	<0,00050	<0,00050	<0,00050	0,001
1,2-Dicloroetano	μg/l	<0,0050	0,063	<0,0050	<0,0050	<0,0050	3
1,2-Dicloroetilene	μg/l	0,125	0,11	<0,010	<0,010	<0,010	60
1,2-Dicloropropano	μg/l	<0,0050	<0,0050	<0,0050	0,0175	<0,0050	0,15
Bromodiclorometano	μg/l	<0,010	<0,010	<0,010	<0,010	<0,010	0,17
cis-1,2-Dicloroetilene	μg/l	0,125	0,095	<0,010	<0,010	<0,010	0,17
Clorometano	μg/l	<0,050	<0,050	<0,050	<0,050	<0,050	1,5
Cloruro di vinile	μg/l	<0,010	0,0265	<0,010	<0,010	<0,010	0,5
Dibromoclorometano	μg/l	<0,010	<0,010	<0,010	<0,010	<0,010	0,13
Esaclorobutadiene	μg/l	<0,010	<0,010	<0,010	<0,010	<0,010	0,15
Sommatoria organoalogenati	μg/l	<0,050	0,110	<0,050	<0,050	<0,050	10
		·			·		
Tetracloroetilene (PCE)	μg/l	<0,050	<0,050	<0,050	<0,050	<0,050	1,1
trans-1,2-Dicloroetilene	μg/l	<0,010	0,0124	<0,010	<0,010	<0,010	0.2
Tribromometano (Bromoformio)	μg/l	<0,0050	<0,0050	<0,0050	<0,0050	<0,0050	0,3
Tricloroetilene	μg/l	<0,010	0,0209	<0,010	<0,010	<0,010	1,5
Triclorometano (cloroformio)	μg/l	<0,010	<0,010	<0,010	<0,010	<0,010	0,15
Benzo(a)antracene	μg/l	0,00106	0,0242	<0,00056	<0,00056	<0,00056	0,1
Benzo(a)pirene	μg/l	0,00066	0,00251	0,00035	<0,00014	0,00045	0,01
Benzo(b)fluorantene	μg/l	0,00070	<0,00056	0,00076	<0,00056	<0,00056	0,1
Benzo(g,h,i)perilene	μg/l	0,000293	0,00117	<0,00014	<0,00014	<0,00014	0,01
Benzo(k)fluorantene	μg/l	<0,00056	<0,00056	<0,00056	<0,00056	<0,00056	0,05
Crisene	μg/l	0,00145	0,048 <0,00056	<0,00056 <0,00056	<0,00056 <0,00056	<0,00056 <0,00056	5 0,01

data di prelievo		30.03.2022	30.03.2022	30.03.2022	30.03.2022	30.03.2022	
Parametro/Piezometro		PZ1	PZ2	PZ3	PZ4	PZ5	
	U.M.						Valore limite
Indeno(1,2,3-c,d)pirene	μg/l	<0,00056	0,00166	<0,00056	<0,00056	<0,00056	0,1
Pirene	μg/l	0,0047	0,0305	0,00131	<0,00056	0,00250	50
Sommatoria IPA 31,32,33,36	μg/l	0,00099	0,0028	0,00076	<0,00056	<0,00056	0,1
2,4-DDD	μg/l	<0,00056	<0,00056	<0,00056	<0,00056	<0,00056	
2,4-DDE	μg/l	<0,00056	<0,00056	<0,00056	<0,00056	<0,00056	
2,4-DDT	μg/l	<0,00056	0,055	<0,00056	<0,00056	<0,00056	
4,4-DDD	μg/l	<0,00056	<0,00056	<0,00056	<0,00056	<0,00056	
4,4-DDE	μg/l	<0,00056	<0,00056	<0,00056	<0,00056	<0,00056	
4,4-DDT	μg/l	<0,00056	<0,00056	<0,00056	<0,00056	<0,00056	
Aldrin	μg/l	<0,00056	<0,00056	<0,00056	<0,00056	<0,00056	0,03
alfa-esaclorocicloesano	μg/l	<0,00056	<0,00056	<0,00056	<0,00056	<0,00056	0,1
Atrazina	μg/l	<0,00056	<0,00056	<0,00056	<0,00056	<0,00056	0,3
Beta-esaclorocicloesano	μg/l	<0,00056	<0,00056	<0,00056	<0,00056	<0,00056	0,1
Clordano	μg/l	<0,00056	<0,00056	<0,00056	<0,00056	<0,00056	0,1
DDD, DDT, DDE	μg/l	<0,00056	0,055	<0,00056	<0,00056	<0,00056	0,1
Dieldrin	μg/l	<0,00056	<0,00056	<0,00056	<0,00056	<0,00056	0,03
Endrin	μg/l	<0,00056	<0,00056	<0,00056	<0,00056	<0,00056	0,1
Sommatoria Fitofarmaci	μg/l	<0,00056	0,055	<0,00056	<0,00056	<0,00056	0,5
PCB (Aroclor 1242, 1248, 1254, 1260)	μg/l	<0,00022	<0,00022	<0,00022	<0,00022	<0,00022	0,01
Idrocarburi C<10	μg/l	<22	103	<22	<22	<22	
Idrocarburi C<10 come n-esano	μg/l	<24	113	<24	<24	<24	
Idrocarburi C10-C40	μg/l	<28	900	<28	<28	<28	
Idrocarburi C10-C40 come n-esano	μg/l	<31	990	<31	<31	<31	
Idrocarburi totali come n-esano	μg/l	<31	1100	<31	<31	<31	350

TABELLA 9 - RISULTATI ANALITICI DELLE ACQUE SOTTERRANEE

Come indicato in tabella 8 i risultati dei campionamenti delle acque sotterranee indicano superamenti di Ferro nei piezometri Pz1 e PZ2, Manganese in tutti i piezometri, fluoruri nel piezometro PZ3 e idrocarburi nel piezometro PZ2. Ferro e Manganese non sono da considerarsi in genere contaminanti diretti, bensì derivanti per lo più da una forma di contaminazione indiretta causata da un mutamento delle condizioni chimico fisiche, di potenziale redox e di pH; tali mutamenti, dovuti ad esempio al consumo di ossigeno causato dalla degradazione di contaminanti di origine organica (HC, Organoalogenati, Prodotti Fitosanitari ...), o alla presenza di composti inorganici che determinano un'alterazione del pH, inducono un incremento della solubilità dei metalli in questione ed un conseguente aumento della loro concentrazione nell'acqua. Studi eseguiti sulla falda superficiale in pozzi ubicati a Nord del SIN di Livorno indicano presenza di ferro e manganese nelle acque campionate (Arpat Definizione dei Valori di Fondo per alcuni parametri nelle acque Sotterranee nei siti di Interesse Nazionale di Massa Carrara, Livorno e Piombino). Gli idrocarburi presenti nelle acque sotterranee è probabile possano derivare dalla presenza di riporti come asfalto ritrovati negli scavi eseguiti; da non escludere la vicinanza all'oleodotto che comunque non risulta era stato oggetto di sversamenti passati. La Tavola 3 in allegato mostra come che il PZ2 sia un monte ed i piezometri a valle non risultino contaminati da Idrocarburi. In Allegato 4 si riportano i certificati analitici dei terreni campionati.

Di seguito si riportano invece gli esiti della speciazione MADEP effettuata sui campioni in cui le concentrazioni di Idrocarburi (leggeri e pesanti) sono risultate superiori al limite di rilevabilità strumentale.

	Data di		Frazioni a	li Idrocarbu	Frazioni di Idrocarburi		
Campione	prelievo	Alifatici			Aromatici		
	prelievo	C5-C8	C9-C12	C13-18	C19-C36	C9-C10	C11-C22
Unità di	misura				(μg/l)		
PZ2	30/03/22	63	200	130	550	<10	0,67

TABELLA 10 - RISULTATI DELA SPECIAZIONE MADEP DEGLI IDROCARBURI NELLE ACQUE SOTTERRANEE

In Allegato 4 sono riportate i referti analitici delle determinazione eseguite.

4. MODELLO CONCETTUALE

Il Modello Concettuale del Sito (MCS) ha la finalità di individuare le potenziali fonti primarie e secondarie, pregresse e ancora in essere della contaminazione e le vie di diffusione della medesima contaminazione verso potenziali bersagli ambientali e umani. Nel caso in esame il Modello Concettuale del Sito (MCS) è stato formulato in base alle informazioni storiche disponibili ed alle caratteristiche geologiche ed idrogeologiche dell'area integrate con i risultati analitici ottenuti dalle indagini ambientali svolte e con le prove di campo eseguite. Tale modello, è strutturato per l'individuazione dei seguenti aspetti:

- tipologia delle sorgenti di contaminazione;
- tipologia delle vie di diffusione della contaminazione;
- tipologia dei bersagli della contaminazione.

4.1 TIPOLOGIA ED ESTENSIONE DELLA CONTAMINAZIONE

Le sorgenti di contaminazione sono differenziate in primarie e secondarie, quelle primarie sono rappresentate dall'elemento o dagli elementi che sono causa di inquinamento, mentre quelle secondarie dagli elementi soggetti alla contaminazione diretta (come acqua, suolo, aria) che a loro volta possono diventare fattori di trasferimento di inquinanti verso altri comparti ambientali o verso bersagli. I contaminanti riscontrati nel sito indagato sono principalmente metalli, idrocarburi petroliferi alifatici ed aromatici, per i quali sono state riscontrate concentrazioni superiori alle CSC previste dal D.Lgs.152/2006 per la destinazione d'uso verde residenziale nei campioni di terreno prelevati da scavi realizzati nel mese di Aprile 2022. L'intervallo massimo di profondità interessato da superamenti delle

CSC è compreso tra 1 e 4 metri di profondità ed è relativo ad alcuni scavi eseguiti in sito. Per quanto riguarda la matrice ambientale acque sotterranee sono stati riscontrati superamenti di Ferro e manganese in tutti i piezometri, idrocarburi nel solo piezometro PZ2 e fluoruri nel solo piezometro PZ3 ubicati a monte idrogeologico.

4.2 SORGENTI DI CONTAMINAZIONE

La sorgente di contaminazione è riconducibile ad un riporto di terreno in alcuni casi commisto a materiale antropico avvenuto in anni diversi utilizzato per colmare il sito di studio al tempo area depressa. Allo stato attuale, considerate le evidenze riscontrate in campo e la cessazione delle attività di riempimento è possibile escludere la presenza di fonti primarie di contaminazione. Le sorgenti di contaminazione attive sono invece di tipo secondario e sono costituite dal terreno insaturo e dalle acque sotterranee per tutti i parametri eccedenti le rispettive CSC indicate dal D.Lgs. 152/06.

4.3 PERCORSI DI MIGRAZIONE

A seguito della definizione della tipologia delle fonti di contaminazione di un sito, si passa alla valutazione dei possibili percorsi di migrazione della contaminazione stessa ed alle possibili modalità di esposizione dei bersagli alla contaminazione. La migrazione dei contaminanti nel sottosuolo avviene con modalità diverse in funzione delle caratteristiche del sottosuolo (granulometria, stratificazione, presenza e grado di fratturazione, grado di saturazione in acqua e permeabilità) e del prodotto stesso (ripartizione nelle fasi liquida, vapore e disciolta nelle acque sotterranee). Considerando un terreno mediamente omogeneo limo argilloso sabbioso con ghiaia, in funzione del grado di saturazione in acqua il sottosuolo può essere suddiviso in una zona insatura (o vadosa), una zona a saturazione parziale (frangia capillare) e una zona satura (acquifero). In relazione agli esiti del piano di caratterizzazione sono state valutate le potenziali vie di diffusione della contaminazione: diffusione della eventuale contaminazione per esposizione diretta mediante ingestione e contatto dermico e aerodispersione delle particelle fini con conseguente inalazione di polveri, dilavamento dei possibili contaminanti per fenomeni di infiltrazione delle acque meteoriche, lisciviazione e dissoluzione in falda di eventuali contaminanti per oscillazioni stagionali del livello di falda, etc. Di seguito si riporta uno schema generico del modello concettuale

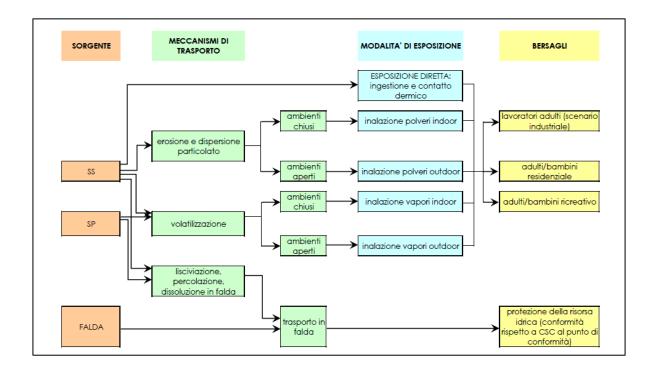


Figura 3: schema generico modello concettuale

Di seguito si riporta una sintesi di tutte le possibili vie di migrazione verso i comparti ambientali, indicando quali di queste risultino attive e quali inattive in funzione dei risultati della Caratterizzazione.

Esposizione diretta mediante ingestione e contatto dermico nelle aree prive di impermeabilizzazione superficiale: tale via di esposizione risulta attiva solo a partire dalla sorgente di contaminazione suolo superficiale nelle aree caratterizzate dall'assenza di un manto impermeabile superficiale. A seguito di alcuni superamenti nella matrice suolo superficiale, la via di esposizione diretta mediante ingestione e contatto dermico risulta attiva.

Aerodispersione delle particelle fini nelle aree non asfaltate con conseguente inalazione di polveri indoor o outdoor: per tale via di esposizione valgono le medesime considerazioni effettuate relativamente alle vie di esposizione diretta, in quanto la aerodispersione delle particelle può avvenire solo da una sorgente in suolo superficiale in aree non asfaltate e nelle quali la sorgente di contaminazione risulta superficiale. La presente via di migrazione/esposizione quindi risulta attiva per il sito in esame per quanto già detto al punto precedente.

Volatilizzazione dei composti maggiormente volatili e dispersione in aria o accumulo in ambienti confinati con conseguente inalazione di vapori indoor e outdoor: la via di migrazione mediante volatilizzazione di vapori con possibile esposizione attraverso inalazione può risultare attiva

per i soli composti dotati di una certa tensione di vapore. La via di migrazione risulta attiva dai suoli soltanto per il parametro Mercurio in quanto unico composto volatile tra quelli rinvenuti con concentrazioni superiori alle CSC; la stessa via di migrazione risulta attiva anche da falda per il solo parametro Idrocarburi totali espressi come n-esano.

Dilavamento dei contaminanti da suolo per fenomeni di infiltrazione delle acque meteoriche e per lisciviazione e dissoluzione in falda: tale percorso di migrazione può risultare attivo nel caso in cui vi sia una sorgente di contaminazione secondaria nella matrice ambientale suolo e sottosuolo. Considerando che il SITO risulta pressoché a verde per cui non impermeabilizzato e in ragione della presenza di superamenti nella matrice suolo, tale percorso risulta attivo.

Trasporto di contaminanti disciolti in falda verso bersagli off site: la via di migrazione mediante trasporto in falda risulta attiva qualora vi sia già una contaminazione accertata della matrice ambientale acque sotterranee; nel caso in esame risultano superamenti delle CSC per i parametri Ferro, Manganese, Fluoruri e Idrocarburi totali come n-esano. Si fa presente che i superamenti di Ferro e Manganese hanno interessato tutti i piezometri presenti in Sito sia di monte che di valle con concentrazioni confrontabili e che la presenza dei suddetti parametri risulta diffusa nella piana livornese.

In ragione di quanto esposto sopra la via di migrazione mediante trasporto in falda risulta attiva solo per i parametri Idrocarburi totali e Fluoruri.

4.4 POTENZIALI BERSAGLI

I bersagli della contaminazione vengono generalmente suddivisi in ricettori ambientali e ricettori umani. I ricettori ambientali sono identificati nella flora e nella fauna, quali piante, coltivazioni, acque superficiali e profonde, zone protette o habitat particolari; mentre i ricettori umani si distinguono in residenti e frequentatori presenti nell'area di influenza (bersagli in scenario residenziale) e/o nei lavoratori presenti sul sito (bersagli in scenario industriale). I bersagli si possono, inoltre, distinguere in base alla loro localizzazione in bersagli on-site, se presenti in corrispondenza della sorgente di contaminazione, e off-site, se localizzati ad una certa distanza dalla stessa.

I potenziali **bersagli umani** sul sito possono essere individuati nei frequentatori dell'area (bersagli in scenario verde/residenziale) che teoricamente potrebbero venire a contatto con le matrici ambientali acque di falda, suolo e sottosuolo.

Per quanto riguarda i **bersagli ambientali**, essi sarebbero individuabili nelle acque sotterranee, tuttavia dal momento che la contaminazione da Ferro e Manganese risulta diffusa nell'ambito della piana livornese e la presenza di idrocarburi localizzata in un solo piezometro "di monte" non si può ragionevolmente ipotizzare un possibile trasferimento degli analiti in oggetto (ferro e manganese ed

idrocarburi) dalla sorgente ai bersagli ambientali (falda a valle del sito). Per quanto riguarda il parametro fluoruri riscontrati nelle analisi del piezometro PZ3, possiamo valutare meglio la sua diffusione in seguito ad ulteriori campionamenti delle acque da eseguire in sito.

Il rischio sanitario connesso all'esposizione dei potenziale bersagli considerati agli agenti inquinanti presenti nel sito sarà calcolato mediante una specifica procedura di Analisi di Rischio condotta ai sensi del D.Lgs. 152/06 e s.m.i.

5. CONCLUSIONI

Nel periodo Marzo-Aprile 2022 sono state eseguite le indagini di caratterizzazioni indicate nel piano trasmesso agli EE.PP. in Ottobre 2021. Le osservazioni di campo ed i risultati del laboratorio chimico mostrano una potenziale contaminazione in sito presente nel suolo insaturo costituita prevalentemente da metalli, IPA e Idrocarburi pesanti. Le concentrazioni sono state confrontate con i limiti della "tabella 1 colonna A dell'Allegato 5 parte IV del D.Lgs. 152/2006" e salvo alcuni campioni di terreno (saggio S7) le concentrazioni risultano superiori al limite ma vicine alla conformità. Questa indica la presenza di una contaminazione in sito ma con concentrazioni non elevate. Per quanto riguarda le acque sotterranee, i risultati dei campionamenti eseguiti nei piezometri presenti in sito sono stati confrontati con la Tabella 2 dell'Allegato 5, Parte IV, del D.lgs 152/2006; la criticità maggiore è stata rilevata nel piezometro PZ2 con presenza di Idrocarburi nelle acque sotterranee. Negli altri piezometri si sono riscontrati superamenti di Manganese e Ferro e nel solo PZ3 di Fluoruri. Riteniamo necessario ripetere i campionamenti da tutti i piezometri realizzati per valutare nel tempo l'andamento delle concentrazioni nelle acque sotterranee.

ALLEGATI

ALLEGATO 1 TAVOLE

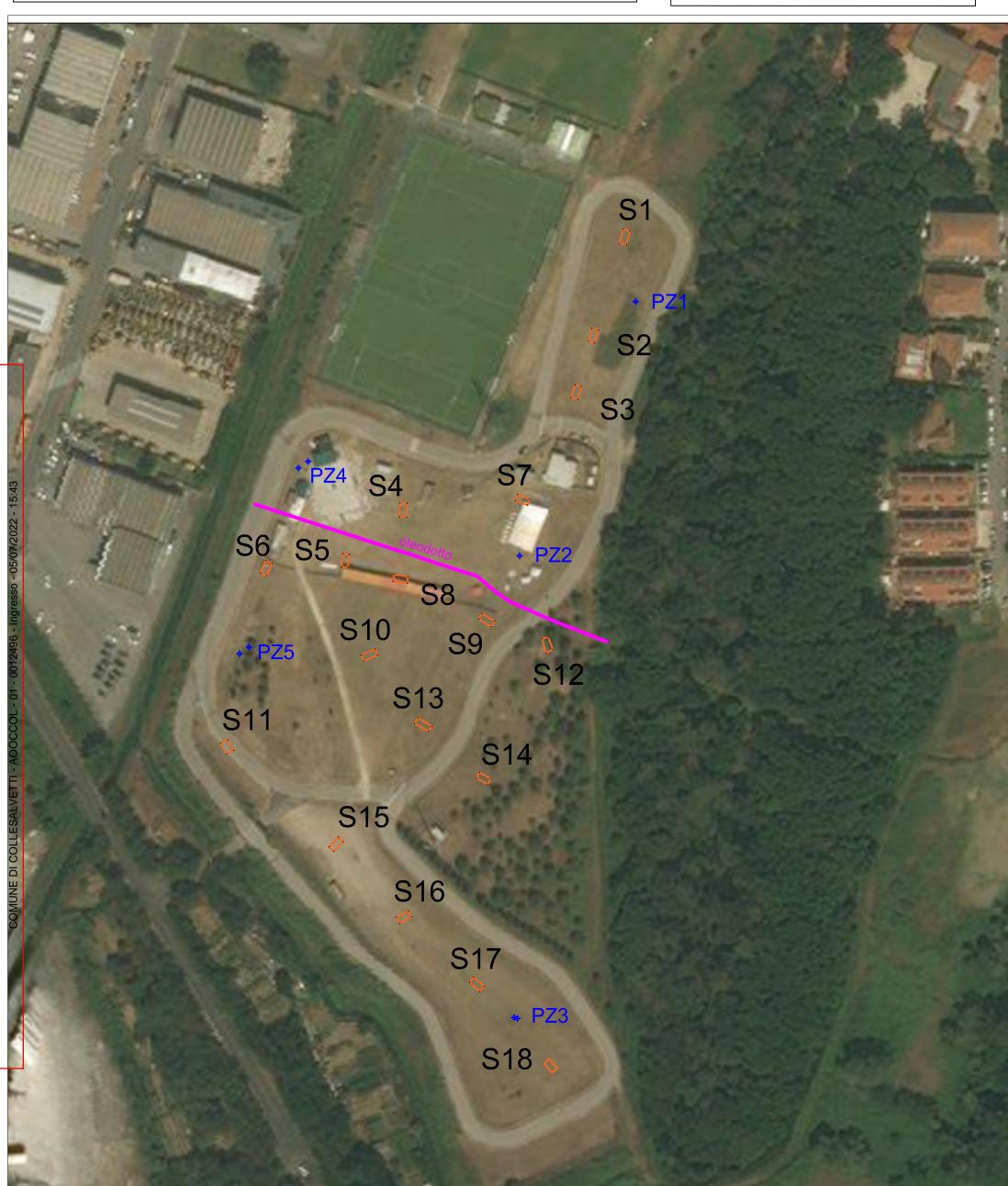
AREA DI PROPRIETÀ PUBBLICA SITA IN VIA BERLINGUER

LOC. STAGNO, COLLESALVETTI (LI)

DATA 12-05-2022

SCALA

PIANO DI CARATTERIZZAZIONE AMBIENTALE PISTA CICLABILE IVO MANCINI—VIA BERLINGUER LOC. STAGNO, COLLESALVETTI (LI)


> UBICAZIONE INDAGINI TAV.1

VERIFICATO MARCO RASPOLLI REDATTO FRANCESCO BORSACCHI

APPROVATO PAQUI MOSCHINI

Legenda

- Ubicazione Piezometro
- Ubicazione trincea di scavo
 - oleodotto

AREA DI PROPRIETÀ PUBBLICA SITA IN VIA BERLINGUER

LOC. STAGNO, COLLESALVETTI (LI)

DATA 12-05-2022

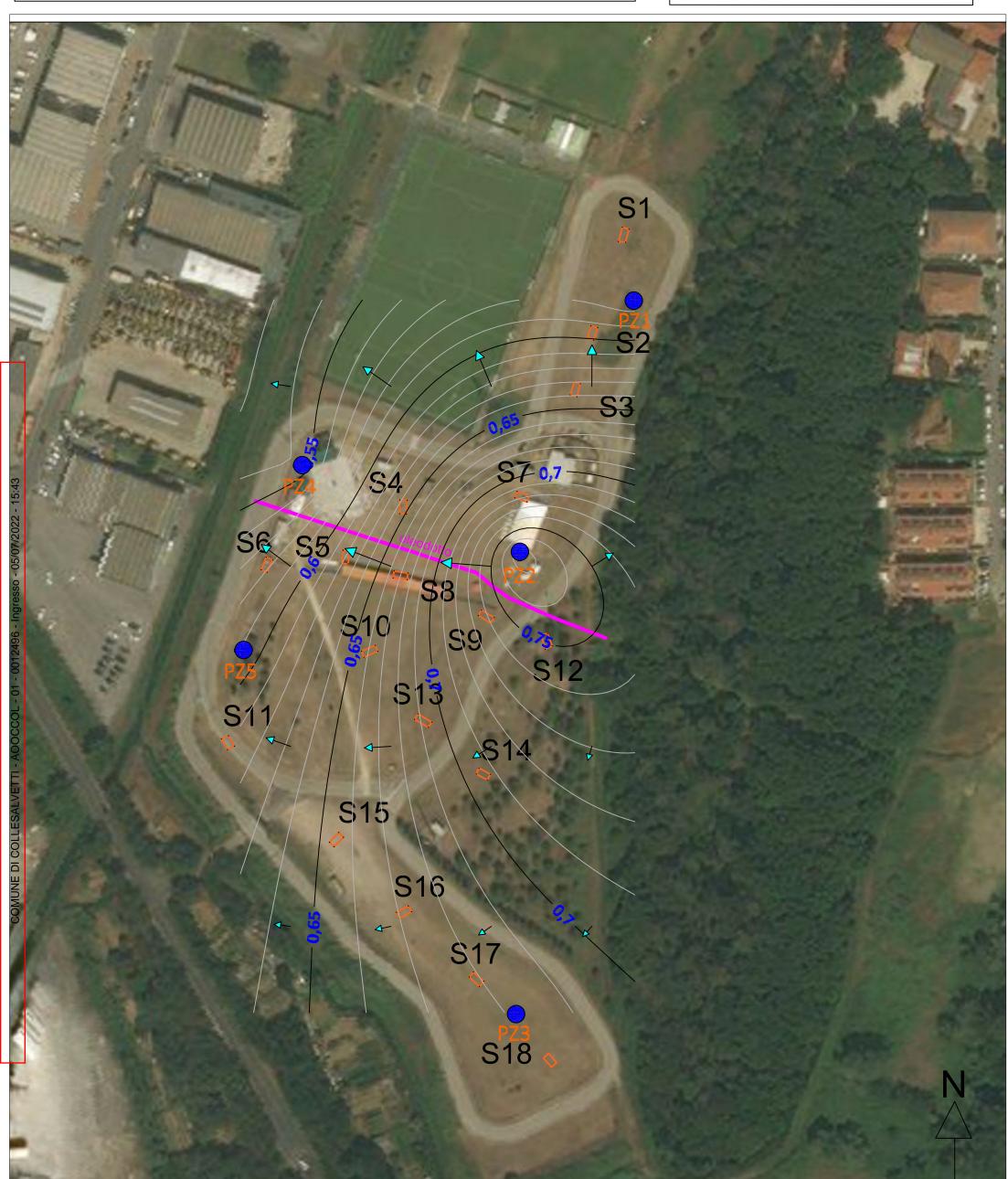
SCALA

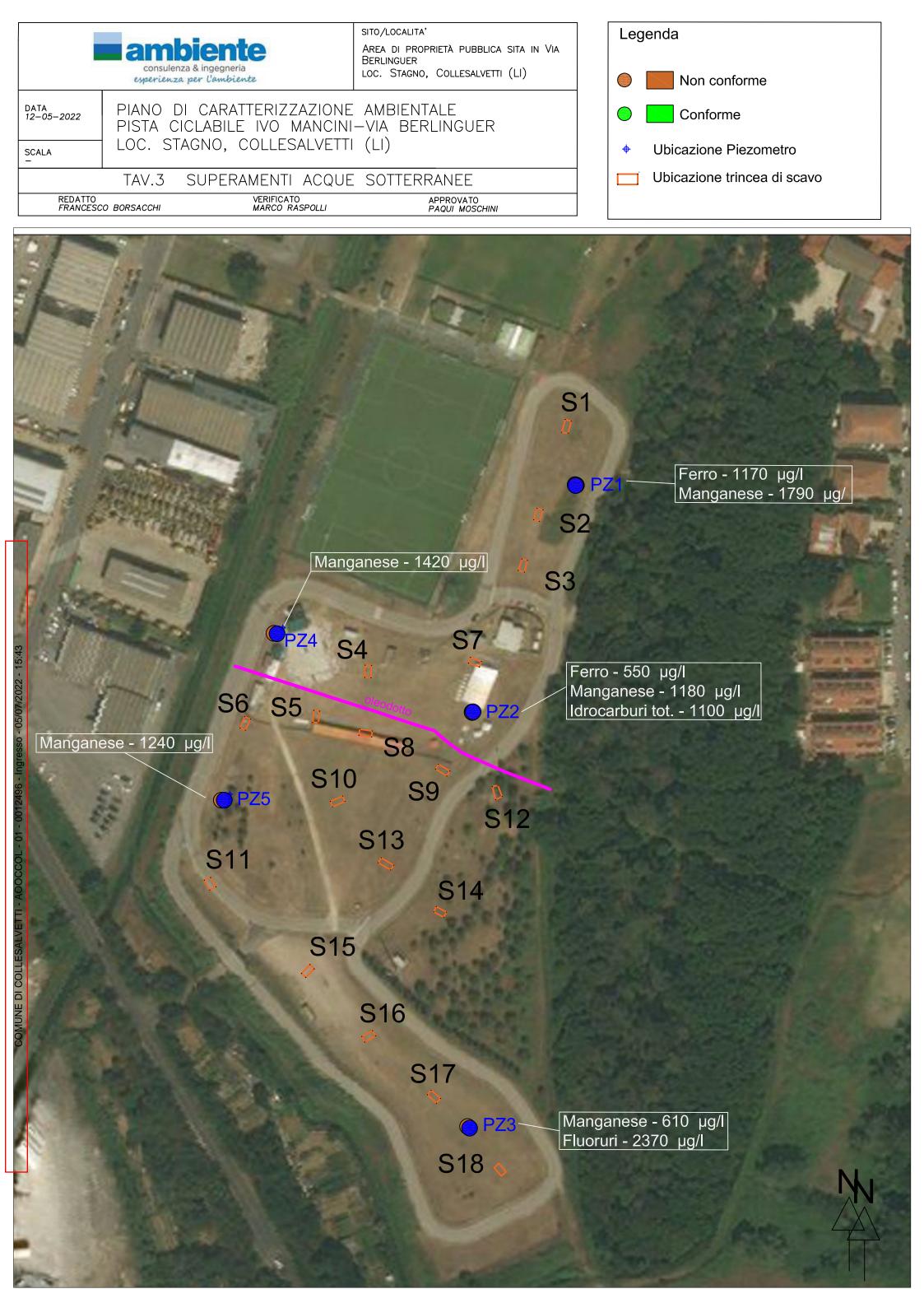
PIANO DI CARATTERIZZAZIONE AMBIENTALE PISTA CICLABILE IVO MANCINI—VIA BERLINGUER LOC. STAGNO, COLLESALVETTI (LI)

> TAV.2 FREATIMETRIA

VERIFICATO MARCO RASPOLLI REDATTO FRANCESCO BORSACCHI

APPROVATO PAQUI MOSCHINI


Legenda


Non conforme

Conforme

Ubicazione Piezometro

Ubicazione trincea di scavo

AREA DI PROPRIETÀ PUBBLICA SITA IN VIA BERLINGUER

LOC. STAGNO, COLLESALVETTI (LI)

SUPERAMENTI TERRENI PROF. (0-1)m

Legenda

- Non conforme
- Conforme
- Ubicazione Piezometro
 - Ubicazione trincea di scavo

REDATTO FRANCESCO BORSACCHI		VERIFICAT MARCO R	O APPROVATO ASPOLLI PAQUI MOSCHI.	NI	
Limiti D.Lgs 152/06	Colonna A	Colonna B	D.M 05/02/1998	ALL.	
Piombo (mg/kg)	100	1000	Piombo (µg/I)	50	Ronzo(a)piropo 0.72 mg/kg
Rame(mg/kg)	120	600	Rame(mg/l)	0,05	Benzo(a)pirene - 0,73 mg/kg
Cobalto (mg/kg)	20	250	Nichel (µg/l)	10	Benzo(a)antracene - 0,85 mg/kg
Nichel (mg/kg)	120	500	Cromo totale (µg/l)	50	Benzo(b)fluorantene - 1,1 mg/kg
Arsenico (mg/kg)	20	50 1500	Piombo (μg/l)	50	Benzo(k)fluorantene - 0,51 mg/kg
Zinco (mg/kg) Cadmio (mg/kg)	150	1500	COD (mg/l)	30	Benzo(g,h,i)perilene - 0,72 mg/kg
Mercurio (mg/kg)	1	5		WY CA	Dibenzo(a,e)pirene - 0,14 mg/kg
Benzo(a)pirene (mg/kg)	0,1	10		S1	Dibenzo(a,i)pirene - 0,12 mg/kg
Benzo(a)antracene (mg/kg)	0,5	10			Indeno (1,2,3-c,d)pirene - 0,72 mg/kg
Benzo(b)fluorantene (mg/kg)	0,5	10			DDD,DDT,DDE - 0,14 mg/kg
Benzo(k)fluorantene (mg/kg)	0,5	10			333,331,332 3,11 mg/kg
Benzo(g,h,i)perilene (mg/kg)	0,1	10			71
Dibenzo(a,e) pirene (mg/kg)	0,1	10			The state of the s
Dibenzo(a,l)pirene (mg/kg)	0,1	10	E x	Ca	
Dibenzo(a,i)pirene (mg/kg)	0,1	10	Market - Was	<u></u> 52	Benzo(a)pirene - 1,4 mg/kg
Dibenzo (a,h) antracene (mg/kg)		10	W. W.		Benzo(a)antracene - 1,1 mg/kg
Indeno (1,2,3-c,d)pirene(mg/kg)		5	Piombo - 170 mg/kg		Benzo(b)fluorantene - 1,1mg/kg
DDD,DDT,DDE (mg/kg)	0,01	0,1		S3 \	Benzo(k)fluorantene - 0,69 mg/kg
PCB totali (mg/kg)	0,06	5	Zinco - 460 mg/kg	STEEN STEEN	Benzo(g,h,i)perilene - 0,77 mg/kg
ldorcarburi C>12 (mg/kg)	50	750		ASSIST	Dibenzo(a,I)pirene - 0,12 mg/kg
			74 64 \$7		Dibenzo(a,i)pirene - 0,2 mg/kg
2	120	殿	S4 \ S1	Section 1	
					Dibenzo (a,h) antracene - 0,19 mg/kg
				1000	Indeno (1,2,3-c,d)pirene - 0,51 mg/kg
	S6	_ S!	Oleodorto	072	DDD,DDT,DDE - 0,046 mg/kg
					Amianto (ricerca qualitativa) - presente
		2011	CO		in minime tracce come fibre di Crisotilo
		- 1	S8	AT THE REAL PROPERTY.	
	200	- TO 150	S10 co		Cadmio - 3,8 mg/kg
		75	S9 5		Piombo - 540 mg/kg
		25		240	Zinco - 1600 mg/kg
VENT SE SILIPIA I	200	200		512	
	1000		S13	State of the last	DDD, DDT, DDE - 0,011 mg/kg
	S11		The second second	5 6 6	
					A CONTRACT OF THE PARTY OF THE
	-		S14		
	100				
Danza(a)nirana 0.26 mg	/Ica	Mr.	- The State of the		AND ADDRESS OF THE PARTY OF THE
Benzo(a)pirene - 0,36 mg	/kg	4	S15		
Mercurio - 1,6 mg/kg	300				THE RESERVENCE OF THE PARTY OF
Benzo (g,h,i) perilene - 0,2	26 mg	/kg			
Dibenzo(a,i)pirene - 0,1 m	ng/kg	200	10000000000000000000000000000000000000		
Indeno 1,2,3(c,d) pirene-0		a/ka	S16		
DDD,DDT,DDE - 0,022 m		9, 1.9	The second second		
1,000,001,00C - 0,022 III	gritg	Sec.	The same of the sa		
	198	4.14	C17		The state of the s
	100	March L	31/		THE RESERVE OF THE PARTY OF THE
				Б	enzo(a)pirene - 0,21 mg/kg
			MESCE DA WILLIAM		
					enzo(g,h,i)perilene - 0,15 mg/kg
The state of the s			010	Ir	ndeno 1,2,3 (c,d) pirene - 0,13 mg/kg
		1000	S18		
THE PERSON			AND DESCRIPTION OF THE PERSON	3 P. C. C.	

AREA DI PROPRIETÀ PUBBLICA SITA IN VIA BERLINGUER

LOC. STAGNO, COLLESALVETTI (LI)

DATA 12-05-2022

SCALA

PIANO DI CARATTERIZZAZIONE AMBIENTALE PISTA CICLABILE IVO MANCINI-VIA BERLINGUER LOC. STAGNO, COLLESALVETTI (LI)

TAV.5 SUPERAMENTI TERRENI PROF. (1-fondo scavo)m Legenda Non conforme Conforme Ubicazione Piezometro Ubicazione trincea di scavo

REDATTO FRANCESCO BORSACCHI		VERIFICATO	<u> </u>	APPROVATO PAQUI MOSCHINI			
		-			1000		
Limiti D.Lgs 152/06	Colonna	Colonna	D.M 05/02/19	aas ALL.			
	100	1000		3		The second secon	
Piombo (mg/kg) Rame(mg/kg)	120	600	Piombo (µg/l)	50		SHOW THE PARTY OF	
Cobalto (mg/kg)	20	250	Rame(mg/l)	0,05		Idrocarburi C>12 - 180 mg/kg	18
Nichel (mg/kg)	120	500	Nichel (µg/l)	10 50	100	Tarodarbarr 3º 12º 100 mg/kg	80
Arsenico (mg/kg)	20	50	Cromo totale (μg Piombo (μg/l)	50			
Zinco (mg/kg)	150	1500	COD (mg/l)	30			
Cadmio (mg/kg)	2	15	OGB (Mg/I)	70			
Mercurio (mg/kg)	1	5			S1/	Benzo(a)pirene - 0,12 mg/kg	
Benzo(a)pirene (mg/kg)	0,1	10				Benzo(g,h,i)perilene - 0,11 mg/k	g
Benzo(a)antracene (mg/kg)	0,5	10			A CONTRACTOR	DDD,DDT,DDE - 0,093 mg/kg	
Benzo(b)fluorantene (mg/kg) Benzo(k)fluorantene (mg/kg)	0,5 0,5	10				Idrocarburi C>12 - 130 mg/kg	96
Benzo(g,h,i)perilene (mg/kg)	0,5	10					
Dibenzo(a,e) pirene (mg/kg)	0,1	10			O PZ		K.
Dibenzo(a,l)pirene (mg/kg)	0,1	10	£	200			
Dibenzo(a,i)pirene (mg/kg)	0,1	10		ST. T.	- 52	Cobalto - 23 mg/kg	
Dibenzo (a,h) antracene (mg/kg)	0,1	10		Lateral Con	0999	Nichel - 240 mg/kg	
Indeno (1,2,3-c,d)pirene (mg/kg)		5				Idrocarburi C>12 - 170 mg/kg	
DDD,DDT,DDE (mg/kg)	0,01	0,1		1 96 L. Com	S 3	Sup. da test di cessione	20
PCB totali (mg/kg)	0,06	5	Benzo(a)pirene	e - 0,16 mg/kg		Nichel - 12 µg/l	
Idorcarburi C>12 (mg/kg)	50	750	D. T. Control	/1=0-0-0	SIL		
- 0012496 - Ingresso - 05/07/2022 - 15:43	\$6 • P		S8 S10 S	O PZ2 S9 S12	Pior Zind Ben Ben Inde Idro Ami	curio - 42 mg/kg mbo - 130 mg/kg co - 310 mg/kg zo(a)pirene - 0,21 mg/kg zo(g,h,i)perilene - 0,14 mg/kg eno (1,2,3 - c,d)pirene - 0,14 mg/kg carburi C>12 - 1800 mg/kg anto (ricerca qualitativa) - presente ninime tracce come fibre di Amosite	Control Control
Arapina 20 mg/kg	S11		\$13 	S14		Rame - 510 mg/kg Zinco - 340 mg/kg Benzo(a)pirene - 0,4 mg/kg Benzo(g,h,i)perilene - 0,21 mg/kg Dibenzo(a,i)pirene - 0,11mg/kg	
Arsenico - 29 mg/kg Benzo(a)pirene - 0,39mg/kg			045			Indeno (1,2,3-c,d)pirene - 0,22 mg/kg	g
Benzo(g,h,i)perilene 0,27mg			S15	Arsenico	- 29 mg/kg	DDD,DDT,DDE - 0,095 mg/kg	
Dibenzo(a,i)pirene - 0,13mg					40 mg/kg	ACT AS TO SECURITY AND ASSESSMENT OF THE PARTY OF THE PAR	
Indeno (1,2,3-c,d)pirene 0,2		g / ¯			80 mg/kg	Sup. da test di cessione:	
말 PCB totali - 0,19 mg/kg			S16	21100 - 1	oo mg/kg	Nichel - 27 µg/l	
DDD,DDT,DDE - 0,029 mg/l	kg					Rame - 0,56 mg/l	
ं Idrocarburi C>12 - 52mg/kg						Cromo totale - 52 µg/l	
		/		617		Piombo - 67 µg/l	
Arsenico - 25 mg/kg	300					COD - 37 mg/l	
Cadmio - 2,3 mg/kg						GGB of mg/l	
	S 122 CI /I			OPZ3	Diomb	20 160 mg/kg	
Benzo(a)pirene - 0,46					PIOITI	po - 160 mg/kg	
Benzo(g,h,i)perilene				S18	The state of	COLUMN TO THE REAL PROPERTY OF THE PARTY OF	
Indeno (1,2,3-c,d)pire	ene - C	, 19 mg	J/Kg	010			
THE RESIDENCE OF THE PERSON OF	Δr	senico	- 23 mg/kg	11 10 10			
			- 23 mg/kg pirene - 0 30 mg/	ka			

Benzo(a)pirene - 0,39 mg/kg

Benzo(g,h,i)perilene - 0,34 mg/kg Indeno (1,2,3-c,d)pirene - 0,3 mg/kg

ALLEGATO 2

COMUNICAZIONI

AREA DI COORDINAMENTO | Protezione Civile - Ambiente

SERVIZIO 4
Ambiente e Protezione Civile

UFFICIO AMBIENTE

Per informazioni 0586 980 240 – 258 – 270 ambiente@comune.collesalvetti.li.it

A

Spett. Comune di Collesalvetti - Servizio n.6
Pianificazione e Patrimonio Pubblico
Sede

Spett. ARPAT Dipartimento di Livorno arpat.protocollo@postacert.toscana.it

Spett. Azienda USL Toscana Nord Ovest
Sanità Pubblica Sede di Livorno

direzione.uslnordovest@postacert.toscana.it

Spett. Regione Toscana Settore Bonifiche regionetoscana@postacert.toscana.it

Spett. Prefettura di Livorno

E, p. c.

Spett. Ambiente S.p.A.

ambientesc@messaggipec.it

protocollo.prefli@pec.interno.it

OGGETTO: sito LI-1148, ubicato in via Berlinguer a Stagno (LI), procedimento ai sensi degli artt.242 e 245 del D.Lgs. 152/06: approvazione Piano di Caratterizzazione.

Facendo seguito alla nostra precedente nota prot. n.12525 del 07/07/2021, riguardante l'indizione della conferenza dei servizi semplificata in modalità asincrona per l'approvazione del Piano di Caratterizzazione del sito codice identificativo SISBON LI-1148, ubicato in via Berlinguer a Stagno (LI), e istruiti i pareri pervenuti dagli enti interpellati, con la presente si informa che, con determina n.540 del 12/08/2021, è stato approvato con prescrizioni il Piano di Caratterizzazione per il sito in questione.

In allegato alla presente si trasmette la determina n.540 del 12/082021 e i relativi allegati, di seguito elencati:

- Piano di Caratterizzazione Ambientale per il sito in oggetto (ALLEGATO_1);
- parere Azienda USL Toscana nord ovest (ALLEGATO_2);
- parere "Settore Miniere ed Autorizzazioni in materia di Geotermia, Bonifiche" della Regione Toscana (ALLEGATO_3);
- parere Dipartimento ARPAT di Livorno (ALLEGATO_4).

Si informa che

 il Responsabile del procedimento è il P.I. Sandro Lischi, Responsabile del Servizio n.4 "Ambiente e Protezione Civile", tel.0586.980240/258, PEC <u>comune.collesalvetti@postacert.toscana.it</u> e.mail ambiente@comune.collesalvetti.li.it;

- l'amministrazione procedente è il Servizio n.4 "Ambiente e Protezione Civile" del Comune di Collesalvetti;
- l'oggetto del presente procedimento è l'approvazione del Piano di Caratterizzazione del sito LI-1148.

A disposizione per eventuali chiarimenti in merito, con l'occasione si porgono cordiali saluti.

Collesalvetti, lì 12/08/2021

Area di Coordinamento n.2 "Protezione Civile – Ambiente"

Will Responsabile del Servizio n.4: Servizio Ambiente e Protezione Civile

P.I Sandro Lischi (*)

* Documento informatico firmato digitalmente ai sensi del Testo Unico D.P.R 28 dicembre 2000 n.445 e del D.Lgs 7 marzo 2005 n.82 e norme collegate, il quale sostituisce il testo cartaceo e la firma autografa.

Proposta N. 94 ORIGINALE

DETERMINAZIONE DEL RESPONSABILE

Servizio n. 4 - Servizio Ambiente e Protezione Civile

Registro Generale nr.540 del 12/08/2021

Oggetto:

4 – COMUNE DI COLLESALVETTI, SITO CODICE SISBON LI.1148, UBICATO IN VIA BERLINGUER A STAGNO: APPROVAZIONE PIANO DI CARATTERIZZAZIONE, AI SENSI DELL'ART.242, C.3 D.LGS,152/2006 E S.M.I.

Il sottoscritto P.I. Sandro Lischi, in qualità di Responsabile del Servizio n.4 "Ambiente e Protezione Civile", in assenza di conflitto di interessi, anche potenziale, ai sensi dell'art.6 bis della L.7 agosto 1990, n.241, introdotto dalla L.6 novembre 2012, n.190;

VISTI:

- □ la macrostruttura organizzativa approvata con deliberazione di Giunta Municipale del 11/05/2021 n.21, con la quale è stata approvata la nuova Macrostruttura dell'Ente costituita da n.8 unità organizzative apicali dell'Ente. Denominate Servizi e n.3 aree di coordinamento;
- □ la deliberazione di Giunta Municipale del 16/05/2020 n.72 con la quale sono state apportate modifiche ed integrazioni alla Macrostruttura dell'Ente e aggiornato il Funzionigramma degli Uffici e dei Servizi, con l'istituzione di n.8 unità organizzative apicali dell'Ente e l'individuazione dei Servizi, la responsabilità dei quali è affidata a funzionari titolari di posizione organizzativa;
- il Decreto del Sindaco del 28/05/2020 n.13, come prorogato dal Decreto del Sindaco del 27/05/2021 n.6, in base al quale viene conferito l'incarico di Responsabile del Servizio n.4 "Servizio Ambiente e Protezione Civile", la Posizione Organizzativa nonché le funzioni dirigenziali ai sensi dell'art.107 del TUEL al P.I. Sandro Lischi, ai sensi di quanto disposto dal Regolamento degli Uffici e dei Servizi e dall'articolo 17 del CCNL 21/05/2019;

RICHIAMATI:

- □ l'art.107 del D.Lgs. n.267 del 18.08.2000 "T.U. Ordinamento degli EE.LL";
- ☐ l'art.39 del vigente Statuto comunale, nel quale è disciplinata l'attribuzione e l'esercizio delle funzioni dirigenziali;
- il Regolamento sull'ordinamento degli uffici e dei servizi artt.21 e 22;
- □ l'art.191 del D.Lgs. n.267 del 18.08.2000 "T.U. Ordinamento degli EE.LL" e gli art.16 e 17 del vigente Regolamento di Contabilità, approvato con delibera C.C. n.3 del 22.03.2017 e modificato con DCC n.23 del 28.04.2017;
- □ la L. 241/1990 e s.m.i. relativa al procedimento amm.vo ed alle modalità di accesso agli atti;
- □ il Regolamento comunale sul procedimento amministrativo e sul diritto di accesso (accesso civico e accesso generalizzato), approvato con Delibera di C.C. n.104 del 20/12/2017;
- □ il D.Lgs. 82/2005 "Codice dell'Amministrazione Digitale" (e successive modifiche ed integrazioni);
- il Piano Triennale per la Prevenzione della Corruzione con annesso il Piano triennale per la trasparenza e l'integrità 2021-2023 del Comune di Collesalvetti, approvato dalla Giunta Comunale con deliberazione n.33;
- □ il DPR 16/04/2013 n.62, (Codice nazionale di comportamento dei dipendenti pubblici) ed il Codice di comportamento dei dipendenti pubblici del Comune di Collesalvetti, approvato con deliberazione della Giunta comunale n.213 del 30/12/2020;

VISTO:

□ il Regolamento (UE) 2016/679 del Parlamento europeo e del Consiglio del 27 aprile 2016, relativo alla protezione delle persone fisiche con riguardo al trattamento dei dati personali, nonché alla libera circolazione di tali dati "(di seguito Regolamento);

europee e l'attuazion specificamente la principal legislativi in modo de 2016/679, abrogando attuazione alle disposi il Decreto legislativo in nazionale ai principi dal legislatore Italian	pe 25 ottobre 2017, n. 163, recant one di altri atti dell'Unione euro evisione recata dall'art. 13 deleg da adeguare il quadro normativo o quelle che risultino con esso in sizioni non direttamente applicabili n. 101 del 25 Agosto 2018, conter del Regolamento europeo 2016/6 o nel Codice in materia di protez mento Europeo 2016/679 entrato i	opea - Legge di delegazion pa al Governo per l'emanazion o nazionale alle disposizioni compatibili e modificando qua contenute nel Regolamento si nente le disposizioni per l'adego 79 ed alla funzione di armonizione dei dati personali (D.Lg	ne europea 2016-2017", one di uno o più decreti i del Regolamento (UE) anto necessario per dare stesso; guamento della normativa zzare le norme enunciate
	el Regolamento che individua, co servizio o altro organismo che, si personali»;		
essere gli adempimenti esser	nta Municipale n. 72 del 24.05.20 nziali per l'adeguamento dell'Ente ovando il registro unico dei trattam	al Regolamento UE 2016/679	(GDPR "General Data
 il Comune di Colles organizzative per lo regolamento e dalle a in conformità all'asse dei Servizi, i soggetti 	n. 7 del 25/09/2018 con il quale v alvetti è il Titolare del trattamen svolgimento delle relative funzio altre normative vigenti in materia d tto organizzativo dell'Ente, nell'an individuati e delegati per l'esercia ati personali, ciascuno nel rispettiv	to dei dati personali gestiti o ni istituzionali, ed è rapprese i tutela dei dati personali, dal s nbito delle strutture di cui al R zio di alcune funzioni e comp	entato, ai fini previsti dal Sindaco pro tempore; Regolamento degli Uffici e
il Comune di Collesalvetti er (CSC) per la "matrice suolo" i catastalmente al Foglio 27, P	della Soc. ENI Spa "Ufficio oleodo a messo a conoscenza del super iscontrato nel sito ubicato nel Cor tarticella 2255, a seguito dei lavor la – loc. Villaggio Emilio, effettuati	ramento delle concentrazioni nune di Collesalvetti in via Be i di manutenzione straordinari	soglie di contaminazione rlinguer a Stagno, censito ia e realizzazione TOC in
□ la L.R. 30/2006 aven siti contaminati" e ss.□ la deliberazione G.R.	te ad oggetto "Norme in materia a te ad oggetto "Funzioni amministr mm.ii.; T. n.301/10 avente ad oggetto "L.l nateria di bonifica di siti inquinati";	ative di competenza comunal	
oleodotti", agli atti d'ufficio co 152/2006 e ss.mm.ii; con nota agli atti d' Ambiente e Protezio operavano sul cantie 152/2006 e ss.mm.ii. risultando tale area o 01/06/2021, il Resp Collesalvetti provvec comma 2 dell'art.245 del Comune di Colles D.Lgs 152/2006 e ss per la "matrice suol catastalmente al Fog interessati da proced "Codice sito" LI-1148	ia degli eventi, di seguito riporta prote n. 10062 del 01/06/2021, difficio con prot. n. 10069 del 01 ne Civile" del Comune di Collesare in questione l'attivazione del pe disponeva l'attuazione di specifici proprietà del Comune di Collesa proprietà del Servizio n. 6 "Pia leva, in qualità di "soggetto inte del D.Lgs 152/2006 e ss.mm.ii.) salvetti, a effettuare la notifica agli.mm.ii., di superamento delle coro" nel sito ubicato nel Comune glio 27 - Particella 2255 e alla comento di Bonifica" (di seguito SIS), sufficio con prot. n. 11243 del 04	in attuazione a quanto dispo- 1/06/2021, il Responsabile di alvetti comunicava alla Soc. procedimento di notifica ai se che misure di prevenzione; salvetti, con nota in atti d'uffio nificazione e Patrimonio Pu pressato non responsabile di le Responsabile della gestion ii enti interessati, ai sensi del precentrazioni soglie di contamina di Collesalvetti in via Berlia proseguente registrazione sul BBON) di cui alla DGRT 301/2	el Servizio n.4 "Servizio ENI Spa e alle ditte che nsi dell'art.242 del D.Lgs cio con prot. n.10071 del ubblico" del Comune di lella contaminazione" (v. e del patrimonio pubblico comma 1 dell'art.242 del nazione (di seguito CSC) nguer a Stagno, censito "Sistema Informativo Siti 2010, con attribuzione del
Con note adi atti di	LITTICIO CON NICOT N 112/13 del Ω /	UUNUUU II MACAARSAMIA d	AL SANJIZIO N /L "SANJIZIO

Ambiente e Protezione Civile" comunicava al Dipartimento ARPAT di Livorno la data di esecuzione di un

facendo seguito a quanto previsto dal comma 3 dell'art.242 del D.Lgs 152/2006 e ss.mm.ii., con nota in atti d'ufficio prot. n.12222 del 02/07/2021 il Responsabile del Servizio n.6 "Pianificazione e Patrimonio Pubblico" ha trasmesso il Piano di Caratterizzazione Ambientale per il sito in oggetto (ALLEGATO_1), allegato alla

campionamento in contraddittorio al fine di verificare ulteriormente le CSC della "matrice suolo";

presente per costituirne parte integrale, redatto dalla Società Ambiente Consulenza & Ingegneria Spa;

PRESO ATTO dei contenuti dei pareri/contributi tecnici pervenuti dagli enti interessati, di seguito elencati e allegati alla presente per costituirne parte integrante: □ parere Azienda USL Toscana nord ovest, agli atti d'ufficio con prot. n.12973 del 14/07/2021: parere favorevole senza prescrizioni (ALLEGATO_2); □ parere "Settore Miniere ed Autorizzazioni in materia di Geotermia, Bonifiche" della Regione Toscana, agli atti d'ufficio con prot. n.13972 del 29/07/2021: parere favorevole senza prescrizioni (ALLEGATO_3); □ parere Dipartimento ARPAT di Livorno, agli atti d'ufficio con prot. n.14498 del 04/08/2021: parere con prescrizioni (ALLEGATO_4);
RILEVATO che nel parere del Dipartimento ARPAT di Livorno, agli atti d'ufficio con prot. n.14498 del 26/07/2021 vengono proposte delle prescrizioni ad integrazione del Piano di Caratterizzazione agli atti d'ufficio prot. n.12222 del 02/07/2021, di seguito testualmente riportate: sia necessario effettuare almeno 18 punti di indagine per i terreni insaturi (un punto ogni 2500 m²) a copertura di tutta l'area del sito; sia necessario effettuare almeno 5 piezometri a copertura di tutta l'area del sito, dei quali 2 da ubicare in prossimità del Fosso Cateratto; sia preferibile eseguire i punti d'indagine dei terreni tramite scavi e non mediante sondaggi, al fine di una ricerca più efficace di eventuali materiali di riporto di origine antropica e/o rifiuti interrati; sia necessario ricercare anche i parametri Amianto, Diossine e Furani, Fitofarmaci e Idrocarburi leggeri C<12 nei campioni di terreni. sia necessario ricercare anche i parametri PCB, Diossine e Furani nei campioni di acque sotterranee; in caso di rinvenimento di materiali di riporto sia necessario effettuare anche il test di cessione secondo la metodologia prevista dal DM 5 febbraio 1998;
CONSIDERATO che il comma 3 dell'art.242 del D.Lgs 152/2006 e ss.mm.ii. prevede che, effettuata la conferenza di servizi, l'autorità competente autorizzi il Piano di Caratterizzazione con eventuali prescrizioni integrative e che tale autorizzazione costituisca assenso per tutte le opere connesse alla caratterizzazione, sostituendosi ad ogni altra autorizzazione, concessione, concerto, intesa, nulla osta da parte della pubblica amministrazione;
RITENUTO pertanto necessario provvedere all'approvazione del Piano di Caratterizzazione in questione, da integrare con le prescrizioni indicate dal parere espresso dal Dipartimento ARPAT, agli atti d'ufficio con prot. n.14498 del 26/07/2021;
DATO ATTO che la presente determinazione non necessita del visto di regolarità contabile in quanto non comporta riflessi diretti o indiretti sulla situazione economico- finanziaria o sul patrimonio dell'ente;
Espresso il parere favorevole di regolarità tecnica del presente atto, attestante regolarità e correttezza dell'azione amministrativa, ai sensi dell'art. 147-bis D.Lgs. n. 267/2000, che con la sottoscrizione viene attestato;
DETERMINA
 Di approvare il Piano di Caratterizzazione agli atti d'ufficio prot. n.12222 del 02/07/2021, redatto dalla Società Ambiente Consulenza & Ingegneria Spa e allagato alla presente per costituirne parte integrante (ALLEGATO_1), da integrare con le prescrizioni indicate nel parere del Dipartimento ARPAT di Livorno, agli atti d'ufficio con prot. n.14498 del 26/07/2021, allegato alla presente per farne parte integrante (ALLEGATO_4), e di seguito riportate: □ effettuare almeno 18 punti di indagine per i terreni insaturi (un punto ogni 2500 m²) a copertura di tutta l'area del sito; □ effettuare almeno 5 piezometri a copertura di tutta l'area del sito, dei quali 2 da ubicare in prossimità del Fosso Cateratto; □ eseguire i punti d'indagine dei terreni tramite scavi e non mediante sondaggi, al fine di una ricerca più efficace di eventuali materiali di riporto di origine antropica e/o rifiuti interrati; □ ricercare anche i parametri Amianto, Diossine e Furani, Fitofarmaci e Idrocarburi leggeri C<12 nei campioni di terreni. □ ricercare anche i parametri PCB, Diossine e Furani nei campioni di acque sotterranee; □ in caso di rinvenimento di materiali di riporto effettuare il test di cessione secondo la metodologia prevista dal
DM 5 febbraio 1998;

con nota agli atti d'ufficio con prot. n.12525 del 07/07/2021, il Responsabile del Servizio n.4 "Servizio Ambiente e Protezione Civile" ha indetto la conferenza dei servizi, effettuata in modalità semplificata e

asincrona, per l'approvazione del Piano di Caratterizzazione;

2. Di disporre l'aggiornamento del Piano di Caratterizzazione con le prescrizioni riportate al precedente punto 1; le indagini di caratterizzazione dovranno avere inizio entro 60 giorni dalla data di approvazione del presente atto e la trasmissione dell'inizio lavori deve essere depositata all'ufficio scrivente e agli organi di controllo almeno quindici giorni prima dell'inizio.

- La validità del Piano di Caratterizzazione è subordinata al rispetto delle precedenti condizioni. 3.
- Di attestare che il presente atto viene emesso nel rispetto della regolarità e correttezza dell'azione amministrativa 4. ai sensi e per gli effetti di cui all'art.147 bis del D.Lgs. 267/2000;
- Di dare atto che, ai sensi della L. 241/1990, il Responsabile del procedimento è il P.I. Sandro Lischi, Responsabile del Servizio n.4 "Servizio Ambiente e Protezione Civile";
- Il sottoscritto P.I. Sandro Lischi, in qualità di Responsabile del Servizio n.4 "Ambiente e Protezione Civile", dichiara l'assenza di conflitto di interessi, anche potenziale, ai sensi dell'art.6 bis della L.7 agosto 1990, n.241, introdotto dalla L.6 novembre 2012, n.190.
- Di comunicare al soggetto obbligato il presente atto, dopo la sua esecutività ai sensi dell'art.191, comma 1, del D.Lgs. 267/2000;
- Di trasmettere copia del presente atto, corredato dagli ALLEGATI 1 2 3 4, precedentemente dettagliati e parte integrante del presente provvedimento: al Responsabile del Servizio n.6 "Pianificazione e Patrimonio Pubblico" per i conseguenti atti di competenza; alla Società Ambiente Consulenza & Ingegneria Spa, redattrice del Piano di Caratterizzazione in questione;

alla Regione Toscana "Settore Miniere ed Autorizzazioni in materia di Geotermia, Bonifiche";

- all'ARPAT Dipartimento Provinciale di Livorno; all'Azienda U.S.L. Toscana Nord Ovest;
- alla Prefettura di Livorno:
- Dato atto, altresì, che la presente determinazione non necessita del visto di regolarità contabile in quanto non comporta riflessi diretti o indiretti sulla situazione economico- finanziaria o sul patrimonio dell'ente;
- 10. Di dare atto che avverso la presente determinazione è ammesso ricorso giurisdizionale innanzi al TAR Toscana nel termine di giorni 30 dalla pubblicazione all'albo pretorio dell'ente;
- 11. Di dare corso agli obblighi di pubblicazione di cui all'art.1 co.32 L. 190/2012 e di cui all'art.23 D.lgs. 33/2013;
- Di disporre la pubblicazione del presente provvedimento sull'Albo on line;
- Di disporre la registrazione del presente atto nel Registro delle Determinazioni del Servizio Ambiente e Protezione Civile.

Il Responsabile del Servizio **LISCHI SANDRO**

_

PUBBLICAZIONE

Copia del presente atto è stato pubblicato all'Albo Pretorio on line dell'Ente, per 15 giorni consecutivi, dal 12/08/2021 al 27/08/2021.

Collesalvetti, 12/08/2021

L'incaricato FRANGIONI RICO Livorno, 14 luglio 2021

Al Comune di Collesalvetti Servizio 4 Ambiente e Protezione Civile

Oggetto: Piano di caratterizzazione ambientale per sito posto in via Berlinguer, Stagno (cod. LI-1148). Parere.

In riferimento alla Vs. nota prot. 12525 del 7 luglio 2021, esaminata la documentazione relativa al sito in oggetto, si esprime parere favorevole al piano di caratterizzazione.

Distinti saluti

Il Dirigente Medico UF Igiene Pubblica e Nutrizione Dottor Alberto Del Forno

DIPARTIMENTO DI PREVENZIONE

Area Funzionale Igiene Pubblica e Nutrizione

Unità Funzionale Igiene Pubblica e Nutrizione - Zona Livornese -

Responsabile Dott. Claudio Tofanari

Borgo San Jacopo n. 59 57126 Livorno tel. 0586 223577

email: ispn.li@ uslnordovest.toscana.it

PEC: direzione.uslnordovest@ postacert.toscana.it

Azienda USL Toscana nord ovest sede legale via Cocchi, 7 56121 - Pisa P.IVA: 02198590503 competenza.

Direzione Ambiente ed Energia

SETTORE Miniere ed Autorizzazioni in materia di Geotermia, Bonifiche

Prot. n. da citare nella risposta	Data		
Allegati	Risposta al foglio del	n.	

Oggetto: Sito LI-1148 "Arch. Zinna Leonardo Stagno, via Berlinguer (riferimenti catastali: Foglio 27 - Particella 2255)", area di proprietà pubblica sita in Via Berlinguer, loc. Stagno nel Comune di Collesalvetti (LI) - Piano di Caratterizzazione ambientale ai sensi dell'art. 242 c. 3 del D. Lgs. 152/2006. Convocazione Conferenza di Servizi in modalità Asincrona del 27 luglio 2021 - parere di

al Comune di Collesalvetti, Ufficio Ambiente

Vista la convocazione della Conferenza di Servizi in modalità asincrona da parte del Comune di Collesalvetti, ufficio Ambiente, per il giorno 27 luglio p.v., ricevuta con lettera del 7/07/2021 (ns. prot. n. 284338 del 08/07/2021), per valutare il Piano di caratterizzazione ambientale, del giugno 2021, redatto dalla società Ambiente Spa, già trasmesso dal Comune con nota del 2/07/2021 (ns. prot. n. 278822 del 05/07/2021) relativamente al sito LI-1148 di cui all'oggetto,

Preso atto che il Comune di Collesalvetti, in qualità di *soggetto interessato non responsabile della contaminazione*, ai sensi del comma 2 dell'art. 245 del D.Lgs 152/2006, e responsabile della gestione del patrimonio pubblico, proprietario dell'area in oggetto, ai sensi del comma 1 dell'art.242 del D.Lgs 152/2006 e ss.mm.ii. ha attivato il procedimento di bonifica in esame, a seguito del riscontro di superamenti delle Concentrazioni Soglia di Contaminazione nei terreni campionati dalle pareti dello scavo realizzato per le opere di manutenzione delle barre dell'oleodotto di proprietà ENI, lungo il tratto Livorno-Grecciano,

tenuto conto che i risultati dei campionamenti già eseguiti dalla Ditta ENI SpA per la verifica ambientale delle pareti dello scavo realizzato hanno mostrato, nei terreni, superamenti delle CSC di legge per siti ad uso residenziale, per alcuni parametri tra cui Idrocarburi C>12, IPA, metalli, pesticidi, PCB,

considerato che il Piano di caratterizzazione in esame prevede la realizzazione di n. 8 sondaggi a carotaggio continuo fino alla profondità di circa -5 m da p.c. per il prelievo di campioni di terreno (nel caso di ritrovamenti di riporti, saranno prelevati dei campioni per il test di cessione), di cui n. 4 sondaggi saranno approfonditi fino a -12 m da p.c. ed attrezzati a piezometro per il campionamento delle acque di falda e per la ricostruzione del modello idrogeologico,

tenuto conto che i punti di indagine saranno ubicati in maniera da coprire omogeneamente l'area in esame, in particolare i piezometri permetteranno la ricostruzione del flusso monte-valle della falda,

considerata l'estensione del sito in esame (46.000 mq) e la destinazione d'uso residenziale dello stesso;

RITIENE CHE non vi siano elementi ostativi alla realizzazione del Piano di Caratterizzazione in esame.

Cordiali saluti

Il Dirigente Ing. Alessandro Fignani

Per informazioni e chiarimenti contattare: P.O. di riferimento Maria Teresa Zattera (055.4387562 – mariateresa.zattera@regione.toscana.it) Paolo Criscuolo (0554387009 – paolo.criscuolo@regione.toscana.it)

ARPAT - Area Vasta Costa – Dipartimento di LIVORNO Settore Supporto Tecnico

Via Marradi, 114 - 57126 Livorno

N. Prot Vedi segnatura informatica cl. LI.01.23.06/28.3 del a mezzo: PEC

A Comune di Collesalvetti
SERVIZIO 4 Ambiente e Protezione Civile
UFFICIO AMBIENTE
c.a. P.I. Sandro Lischi
ambiente@comune.collesalvetti.li.it

Oggetto: Sito LI-1148, ubicato in via Berlinguer a Stagno, Comune di Collesalvetti (LI).
Piano della caratterizzazione. Parere in merito

Richiesta di parere del Comune di Collesalvetti prot. n. 12525 del 07/07/2021, ricevuta da ARPAT in data 07/07/2021 prot. n. 0052517, in merito al documento "Piano della caratterizzazione ambientale" del sito LI-1148, ubicato in via Berlinguer a Stagno, Collesalvetti (LI), redatto dalla società Ambiente Spa per conto del Comune di Collesalvetti e trasmesso dal Comune di Collesalvetti con nota prot. n. 12222 del 02/07/2021 ed acquisito da ARPAT al prot. n. 0051568 del 05/07/2021.

Piano di indagini proposto al Comune di Collesalvetti

Il sito in esame (figura 1), ubicato ad est del paese di Stagno, occupa un'area di circa 46.000 m².

Figura 1: area del sito in esame (particella catastale n. 2255)

Il Comune di Collesalvetti per la caratterizzazione del sito propone l'esecuzione di n. 8 punti di indagine così suddivisi:

- n. 8 sondaggi a carotaggio continuo fino alla profondità di circa 5 m da p.c. per il prelievo di campioni di suolo e sottosuolo;
- n. 4 dei succitati sondaggi saranno approfonditi fino a circa 12 m da p.c. per il prelievo dei campioni di acque sotterranee.

Per ogni punto d'indagine si prevede il prelievo di n.3 campioni di suolo rappresentativi dei seguenti livelli di profondità:

- campione superficiale: indicativamente fra 0,0 1,0 metri da piano di campagna;
- un campione prelevato in corrispondenza del livello di oscillazione della falda o, nel caso quest'ultima non venisse intercettata, negli ultimi 50 cm di perforazione;
- uno nella zona intermedia compresa tra i campioni precedenti.

In totale saranno prelevati n. 24 campioni di terreno da avviare a determinazioni analitiche di laboratorio. Eventuali campioni aggiuntivi potranno essere prelevati in sede esecutiva qualora si riscontrassero anomalie stratigrafiche e/o organolettiche lungo la verticale di indagine.

Oltre ai campioni di cui sopra, nel caso di rinvenimento di materiali di riporto sarà previsto il prelievo di eventuali campioni per le verifiche del Test di Cessione ai sensi del D.M. 05/02/98

Sui campioni di terreno saranno ricercati i seguenti analiti:

PARAMETRO	
Arsenico	
Berillio	
Cadmio	
Cobalto	
Cromo totale	
Cromo (VI)	
Mercurio	
Nichel	
Piombo	
Rame	
Vanadio	
Zinco	
Benzo (a) antracene	
Benzo (a) pirene	
Benzo (b) fluorantene	
Benzo (k) fluorantene	
Benzo (g,h,i) perilene	
Crisene	
Dibenzo (a,e) pirene	
Dibenzo (a,l) pirene	
Dibenzo (a,i) pirene	
Dibenzo (a,h) pirene	
Dibenzo (a,h) antracene	

PARAMETRO	
Indeno (1,2,3 - c,d) pirene	
Pirene	
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152	/06
PCB	
Idrocarburi C>12	
Frazione granulometrica < 2 mm	
Frazione granulometrica > 2 mm e < 2 cm	

Mentre sui 4 campioni di acque sotterranee saranno ricercati gli analiti seguenti:

PARAMETRO
Arsenico
Berillio
Cadmio
Cobalto
Cromo totale
Cromo (VI)
Ferro
Mercurio
Nichel
Piombo
Rame
Manganese
Zinco
Cianuri liberi
Fluoruri
Benzene
Etilbenzene
Stirene
Toluene
meta- Xilene + para- Xilene
para – Xilene
Benzo (a) antracene
Benzo (a) pirene
Benzo (b) fluorantene
Benzo (k) fluorantene
Benzo (g,h,i) perilene
Crisene
Dibenzo (a,h) antracene
Indeno (1,2,3 - c,d) pirene
Pirene
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs
152/06 (Calcolo)
Clorometano
Triclorometano (Cloroformio)
Cloruro di Vinile
1,2 – Dicloroetano
1,1 – Dicloroetilene
Tricloroetilene
Tetracloroetilene (PCE)
Esaclorobutadiene
Sommatoria Organoalogenati
1,1 - Dicloroetano

PARAMETRO	
1,2 – Dicloroe	tilene
1,2 - Diclorop	ropano
1,1,2 - Triclor	oetano
1,2,3 - Triclor	opropano
1,1,2,2 - Tetr	acloroetano
Tribromomet	ano (bromoformio)
1,2 - Dibromo	petano
Dibromocloro	metano
Bromodicloro	metano
Alaclor	
Aldrin	
Atrazina	
alfa – esaclor	ocicloesano
beta – esaclo	rocicloesano
gamma - esac	lorocicloesano (Lindano)
Clordano	
DDD, DDT, DD	DE
Dieldrin	
Endrin	
Somm.fitofar D.lgs 152/06(maci 76-85 All.5 Tab.2 Calcolo)
	tali (espressi come n-

Considerazioni e conclusioni

Considerato che:

- l'area è stata in anni passati oggetto di riempimenti terrigeni provenienti da zone diverse in quanto nata come area depressa;
- nei terreni degli scavi, effettuati per i lavori all'oleodotto ENI, sono stati ritrovati materiali di origine antropica contenenti amianto.

Questo Dipartimento ritiene che:

- sia necessario effettuare almeno 18 punti di indagine per i terreni insaturi (un punto ogni 2500 m²) a copertura di tutta l'area del sito;
- sia necessario effettuare almeno 5 piezometri a copertura di tutta l'area del sito, dei quali due da ubicare in prossimità del Fosso del Cateratto;
- sia preferibile eseguire i punti d'indagine dei terreni tramite scavi e non mediante sondaggi, al fine di una ricerca più efficace di eventuali materiali di riporto di origine antropica e/o rifiuti interrati;
- sia necessario ricercare anche i parametri <u>Amianto, Diossine e Furani, Fitofarmaci e Idrocarburi leggeri C<12</u> nei campioni di terreni.
- sia necessario ricercare anche i parametri <u>PCB, Diossine e Furani</u> nei campioni di acque sotterranee;
- in caso di rinvenimento di materiali di riporto sia necessario effettuare anche il test di cessione secondo la metodologia prevista dal DM 5 febbraio 1998.

Distinti Saluti

Livorno, 26/07/2021

La Responsabile del Dipartimento

Dr Chim Lucia Rocchi 1

¹ Documento informatico sottoscritto con firma digitale ai sensi del D.Lgs 82/2005. L'originale informatico è stato predisposto e conservato presso ARPAT in conformità alle regole tecniche di cui all'art. 71 del D.Lgs 82/2005. Nella copia analogica la sottoscrizione con firma autografa è sostituita dall'indicazione a stampa del nominativo del soggetto responsabile secondo le disposizioni di cui all'art. 3 del D.Lgs 39/1993

AREA DI COORDINAMENTO | Protezione Civile - Ambiente

SERVIZIO 4
Ambiente e Protezione Civile

UFFICIO AMBIENTE

Per informazioni 0586 980 240 – 258 – 270 ambiente@comune.collesalvetti.li.it

A

Spett. Comune di Collesalvetti - Servizio n.6
Pianificazione e Patrimonio Pubblico
Sede

Spett. ARPAT Dipartimento di Livorno arpat.protocollo@postacert.toscana.it

Spett. Azienda USL Toscana Nord Ovest Sanità Pubblica Sede di Livorno

direzione.uslnordovest@postacert.toscana.it

Spett. Regione Toscana Settore Bonifiche regionetoscana@postacert.toscana.it

Spett. Prefettura di Livorno

protocollo.prefli@pec.interno.it

E, p. c.

Spett. Ambiente S.p.A.

ambientesc@messaggipec.it

OGGETTO: sito LI-1148, ubicato in via Berlinguer a Stagno (LI), procedimento ai sensi degli artt.242 e 245 del D.Lgs. 152/06: trasmissione Piano di Caratterizzazione aggiornato con recepimento prescrizioni ARPAT.

Facendo seguito alla nostra precedente nota prot. n.15025 del 12/08/2021, riguardante la trasmissione del Piano di Caratterizzazione (di seguito PdC) del sito codice identificativo SISBON LI-1148, ubicato in via Berlinguer a Stagno (LI), e della determina n.540 del 12/08/2021, mediante la quale è stato approvato il suddetto PdC ed è stato disposto il suo aggiornamento con le prescrizioni indicate nel parere del Dipartimento ARPAT di Livorno (espresso nell'ambito della conferenza dei servizi agli atti d'ufficio con prot. n.14498 del 26/07/2021), in allegato alla presente si trasmette il PdC aggiornato con il recepimento delle suddette prescrizioni.

Si ricorda infine che, come prescritto dalla determina di approvazione del PdC, <u>la data di inizio lavori dovrà essere</u> comunicata all'ufficio scrivente e agli enti in indirizzo almeno quindici giorni prima dell'avvio degli stessi.

A disposizione per eventuali chiarimenti in merito, si informa che il Responsabile del procedimento è il P.I. Sandro Lischi, Responsabile del Servizio n.4 "Ambiente e Protezione Civile", tel.0586.980240/258, PEC comune.collesalvetti@postacert.toscana.it e.mail ambiente@comune.collesalvetti.li.it .

Cordiali saluti.

Collesalvetti, lì 20/10/2021

Area di Coordinamento n.2 "Protezione Civile – Ambiente" Il Responsabile del Servizio n.4: Servizio Ambiente e Protezione Civile P.I Sandro Lischi (*)

^{*} Documento informatico firmato digitalmente ai sensi del Testo Unico D.P.R 28 dicembre 2000 n.445 e del D.Lgs 7 marzo 2005 n.82 e norme collegate, il quale sostituisce il testo cartaceo e la firma autografa.

AREA DI COORDINAMENTO | Patrimonio Sviluppo Territoriale

SERVIZIO 6

Pianificazione e Patrimonio Pubblico

Per informazioni 0586 980 239 I.zinna@comune.collesalvetti.li.it

Α

Spett. ARPAT Dipartimento di Livorno

arpat.protocollo@postacert.toscana.it

Spett. Azienda USL Toscana Nord Ovest

Sanità Pubblica Sede di Livorno

direzione.uslnordovest@postacert.toscana.it

Spett. Regione Toscana Settore Bonifiche

regionetoscana@postacert.toscana.it

Spett. Prefettura di Livorno

protocollo.prefli@pec.interno.it

Spett. Comune di Collesalvetti - Servizio n.4

Ambiente e Protezione Civile

E, p. c.

Spett. Ambiente S.p.A.

ambientesc@messaggipec.it

Spett. La Rapida S.r.l.

larapidasrl@pcert.postecert.it

Ing. Alessio Simoni

alessio.simoni@ingpec.eu
ing.alessio.simoni@gmail.com

OGGETTO: comunicazione inizio lavori Piano Caratterizzazione sito LI-1148, ubicato in via Berlinguer a Stagno (LI).

In relazione alle prescrizione indicata la punto n.2 della determinazione n.540 del 12/08/2021, con la quale è stato approvato il Piano di caratterizzazione per il sito LI.1148 ubicato in via Berlinguer a Stagno, successivamente aggiornato con nota prot. n.19216 del 20/10/2021, con la presente si comunica che in data 21/03/2022 avranno inizio i lavori previsti dal suddetto Piano di Caratterizzazione: inizialmente si procederà con l'allestimento di cantiere ce con la realizzazione dei piezometri; dalla data del 28/03/2022 avranno inizio i campionamenti.

Per maggiore chiarezza si allega alla presente il cronoprogramma dei lavori di caratterizzazione, come trasmesso dall'Ing. Alessio Simoni in qualità di Coordinatore della sicurezza.

Si rimane a disposizione per eventuali chiarimenti in merito.

Cordiali saluti.

Collesalvetti, lì 10/03/2022

Il Responsabile del Servizio n.6
PIANIFICAZIONE E PATRIMONIO PUBBLICO
Arch. Leonardo Zinna*

* Documento informatico firmato digitalmente ai sensi del Testo Unico D.P.R 28 dicembre 2000 n.445 e del D.Lgs 7 marzo 2005 n.82 e norme collegate, il quale sostituisce il testo cartaceo e la firma autografa.

AREA DI COORDINAMENTO | Protezione Civile - Ambiente

SERVIZIO 4
Ambiente e Protezione Civile

UFFICIO AMBIENTE

Per informazioni 0586 980 240 – 258 – 270 ambiente@comune.collesalvetti.li.it

Prot. (v. segnatura elettronica) Invio: pec Cat.06 Classe 09

A

Spett. Eni spa

Energy Evolution G/T Refining&Marketing

permessi.oleodotti@pec.eni.com

C.a. Ing. Claudia Muscarà

claudia.muscara@eni.com

E, p.c.

Spett. Comune di Collesalvetti - Servizio n.6

Pianificazione e Patrimonio Pubblico

Spett. Ambiente S.p.A.

ambientesc@messaggipec.it

Spett. La Rapida S.r.l.

larapidasrl@pcert.postecert.it

Spett. Alessio Simoni

alessio.simoni@ingpec.eu

OGGETTO: richiesta picchettamento oleodotto Livorno -Calenzano (FI) DN 200 (8"), Tronco Livorno-Grecciano, nell'area della pista ciclistica Ivo Mancini sita in via Berlinguer a Stagno (LI).

Considerato che in data 21/03/2022 inizieranno i lavori previsti nel Piano di caratterizzazione per il sito LI.1148, ricadente nell'area della pista ciclistica "Ivo Mancini" sita in via Berlinguer a Stagno (LI), al fine di permettere l'esecuzione degli scavi, dei sondaggi e dei piezometri in sicurezza, con la presente si chiede che in tale data personale di ENI Spa sia presente in cantiere per provvedere al picchettamento del tratto dell'oleodotto Livorno-Calenzano (FI) DN 200 (8"), Tronco Livorno-Grecciano, ricadente all'interno del perimetro di indagine.

In attesa di riscontro in merito, si rimane a disposizione per eventuali ulteriori chiarimenti e informazioni: tel. 0586.980240-258, @mail ambiente@comune.collesalvetti.li.it.

Con l'occasione si porgono cordiali saluti.

Collesalvetti, lì 11/03/2022

Area di Coordinamento n.2 "Protezione Civile – Ambiente" Il Responsabile del Servizio n.4: Servizio Ambiente e Protezione Civile P.I Sandro Lischi (*)

^{*} Documento informatico firmato digitalmente ai sensi del Testo Unico D.P.R 28 dicembre 2000 n.445 e del D.Lgs 7 marzo 2005 n.82 e norme collegate, il quale sostituisce il testo cartaceo e la firma autografa.

Dipartimento di Livorno 57126 Livorno Via G. Marradi, 114 Tel. 055.32061 - Fax 055.5305615

PARTE A

VERBALE DI	AC	QUIS	IZIONE XIN	CAMPO - SUCCESSIVA	N° 202203	30-006	13-1		del 30	/03/20	122
Prelevato da	A STATE OF THE PARTY OF THE PAR	1000	V		DENOMINAZI	ONE SIT	O: via B	erlingue	r Stagno		
Destinatario	RdP	: Ferd	lerico Mentes	si	CODICE SITO	(SISBO	N): LI11	48			
	370773	Dell'oction (res		une di Collesalvetti	FASCICOLO I	Manager Street, Square of Street, or Street, S	DB/CBW-Company	TALL AND DESCRIPTION	28.17	gant ar	No.
sopralluogo į	oress	so <u>via</u>	a Berlinguer St	30/ <mark>03/2022 i sottoscrii agno</mark> nel Comune di <u>Colle</u> plezometri/bonifiche □ acq	<u>esalvetti,</u> ed ha ac	quisito i d	campioni	, come di	seguito	indicato:	tuato
N°. Pratica ARI	PALA	B (a cu	ira dell'Uff. accet	ttazione):							
N° ARPALAB		tino¹	CO	DICE CAMPIONE ²	CODICE PUNTO ²			Subal	iquote		
(a cura dell'Uff.	D	L		esempio: PZ1C1)	(esempio PZ1)	P01	P02	P03	P04	P05	P06
		×	P75			×	r	5	×	4	
		8	P26		1 - Sec. 198 5	7	8	7	*	2	
		×	PZ 2		A Electronic Control	×	*	*	*	X	Part Bush
											Total
					AN POW . 1	10.140		E			
										E Same	
Normativa / Li	miti c	li riferin	nento	T.2, All.5,Tit.V, Par IV	/, D.Lgs 152/06	CSR (ve	di tabella)	par.1, All	.1, D.M. 4	71/99
	Paran	netro		CSR	P	arametro		E BELLIAN		CSR	Dairy.
ra (diagra)				e sottoscritto. Una copia vien	e consegnata al Sig	. meco	RAS	POLL	TO ACTUAL COMME	AND THE STATE OF T	n qualita
di	le ai	A 111 nalisi cl _ in da	himiche insieme ata 30/03/		consegnate all'acc	ettazione	del Dipart	imento AF		Lora	
La Parte _	44	MBli	WID KOR		Verbalizzante/i	4	200			100 100 100 100 100 100 100 100 100 100	

PARTE B

Modalità di spurgo piezometri e campionamento

			DATI GENE	RAL	I - Font	e: Ditta	DA	rpat esecu	tore:			
Piezom./ pozzo (sigla)	Pa	35	S) Soggiace [m]			322	P) Pr	ofondità metro [m]	12		ezza d'acqu =P-S) [m]	3
Punto GPS			Sistema di riferimento		Gau WG:	ss-Boaga S 84		E [m] at [°]			N [m] lon [°]	The more states
		Diametro [cm]			□ 5,1 c	m=2'	□7,6	cm= 3'	10,2	cm=4'	
		Area [cm²]	E (NO BOX		id Mali	20,2	6	45	.58	78,5	200	Rometic Ma
Modalità di spu	rao	V) Acqua nel	Person	2,0	3	4.	56	7.8				
modulità di Spa	go	THE RESIDENCE AND ADDRESS OF THE PARTY OF TH	no da spurgare	e (3·I	H·V) [L]	25	A CHARLES					ALPHANIA STATE
Fonte: Ditta	Arpat	Q) Portata po			/ [-]	- 45						
		T) Tempo spu		minl	SI/IPes						Tevre of	
		Volume estrat					U-Marketine					the state of
Modalità di campio	nament			nico		A STATE OF			Campiona	mento sta	tico	
Parametri misurati			me Fonte:	N. S.	drees:	este impura	5.0 \ e ^r	Strumen	to:	in Expen		KERNI DO
□ Ditta □ Arpat es		and the state of t		Ry	[mV] =			L Marie		h	i des [mall 1	
pH =		T[°C]=		1	filled -			Cond [µS/	cm]=		etodo: ASTM	
Metodo: APAT CNR IR	SA	Metodo: APAT CI	NR IRSA 2100			A Standard		Metodo: AP	AT CNR IRSA	2020 M	etodo B (ossir	netro a membrai
2060 Man 29 2003		Man 29 2003				ination of Wa ed 22nd 201		Man 29 200		7	STM D888-12 ssimetro a lur	
Piezom./ pozzo	PZ	-4	S) Soggiace				P) Pr	ofondità				
Punto GPS			Sistema di									
Fullo GF3			riferimento1		D WGS	5 84				A PARTY NAMED AND ADDRESS OF THE PARTY NAMED AND ADDRESS OF TH	SERVICE REAL PROPERTY AND ADDRESS OF THE PARTY OF THE PAR	
						□ 5,1 c	m=2'	□ 7,6 (cm= 3'	10,2	cm=4'	
		Area [cm²]		W.L		20,2	6	45,	58	78,5	50	
Modalità di spui	go	V) Acqua nel I	pzm. [L / m]			2,03	3	4,	56	7,8	5	
		Volume minim	no da spurgare	e (3·1	1-V) [L]	250	311					
Fonte: Ditta	Arpat	Q) Portata poi	mpa [L/min]	3) 6		TOY OF THE	WENT TO				nie Disension	
		T) Tempo spu	rgo effettivo [r	nin]		ESU/CUSE						
		Volume estrat	to (Q·T) [L]		Sarke.	and the	6X SA	2002	N. P. T. S. C.		evillativity (and butternes
Modalità di campio	namento	Campiona	amento dinam	ico		Sely	de	0	Campional	mento stat	tico	
Parametri misurati	dopo lo	spurgo a regir	me Fonte:			THE WAY		Strument	o:			
	m partition of the			by	fm\/l =			1		h	. Imagell 1	
pH =		T[°C]=		1	fund -			Cond [µS/d	m]=			
Metodo: APAT CNR IR: 2060 Man 29 2003			NR IRSA 2100	for t	he Exami	nation of Wa	ter and			2030 M	etodo B (ossir STM D888-12	netro a membrar e1 Metodo C
Piezom./ pozzo					I - Fonte	e: Ditta			ore:	Lunate	and disco	
(sigla)	P	32		nza	3	53			12			Paris colorosale
(10) (10) (10) (10) (10) (10) (10) (10)		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Sistema di									
Punto GPS		Rey domination	riferimento1									Ken Appai
		Diametro [cm]				□ 5,1 cr	n=2'	□7,6 0	m= 3'	□ 10,2	cm=4'	
		Area [cm²]				20,2	6	45,	58	78,5	50	
Modalità di spur	Composition Composition											
		Volume minim	o da spurgare	(3·F	1-V) [L]	7 (٥					37 172
Fonte: Ditta	□ Arpat		The second second	4.1	To the Control	design of the second						0.555
				nin]						MINGELLO		
		THE RESERVE OF THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAME	Martin and State Commission of the Commission of									
Modalità di campio	namento			ico	211000		70.70		Campionar	nento stat	ico	The William of
		spurgo a regin	me Fonte:		0.075					71110		
PH =	Part Control	T[°C]=		Rx	[mV] =			Cond [µS/c	ml-	lo lo	disc [mg/L] :	
					igneral in		a linguistra and	Cond [µ3/0	anj-	Me	etodo: ASTM	0888-12e1
Metodo: APAT CNR IRS 2060 Man 29 2003		Metodo: APAT CN Man 29 2003	IR IRSA 2100	for t	he Exami	A Standard N nation of Wai ed 22nd 2012	er and	Metodo: APA Man 29 2003	AT CNR IRSA	2030 AS	etodo B (ossin STM D888-126 ssimetro a lun	

PARTE C (da compilare a cura del Settore Laboratorio di Area vasta)

	ARPAT - LABORATORIO AI	REA VA	ASTAC	OSTA	Tab	ella B Bon	ifiche Acqu	e (aggiornam	ento 2	7/03/17)		
Subaliqu	iota Parametro	U.d.M.	Richiesta (Barrare)	Limiti in deroga	Tipo	Contenitore	Riempimento	REPRESENTATION OF THE PARTY OF	Conser	Note	Struttura SL AV	S.
0	Metalli (16 elementi) (1)	µg/L	×	live y	G	PE 100 mL	NCR	Acidificate pH<2 con HNO3 67-69% per analisi in	R	Filtrare in	1	
2 813	Boro Boro	µg/L			Н	0 250 mL		tracida, conc.		campo con membrana	OLLO	1
0	Mercurio	µg/L	X		N	VETRO 100 mL	AND S	Hg<=0.1 ppb 0.5 mL per 100 mL	R	0,45 µm	Ë	
>	Cromo esavalente (Cr VI)	pg/L	8		G	PE 100 mL	NCR	T.Q.	С	Congelare	Chimica 1 Via Marradi 114, Livomo	
, .	Fluoruri	µg/L	1			Fig. 12	NO.	1.4	-	Congelare	rradi	1
0.	Solfati	mg/L	8		1					Filtrare in	Ma	1
	Cloruri (a richiesta)	mg/L			Н	PE 250 mL	NCR	T.Q.	R	campo con membrana	\Z	1
1100	Nitrati (a richiesta)	mg/L	100		1					0,45 µm	2	
	Nitriti	mg/L			G	PE 100 mL	CR	T.Q.	R		mi	1
	Azoto ammoniacale (NH4+)	mg/L			G	PE 100 mL	CR	H2SO4 pH <2	R		5	
	Idrocarburi totali (espressi come n-esano)		X	1 - 1			somma di Idro	l carburi pesanti (C arie aliquote de	10-40) e	leggeri (C6-	10)	L
,	Idrocarburi pesanti (C10-C40)	µg/L			М	Vetro scuro Cilindrica c.s.1000 mL	NCR 5	acidificare con HCl a pH<2	R	5 cm dal bordo collo		
	Idrocarburi leggeri (C6-C10)	µg/L				2 x Vial	CR riempire	N		strettn		
100	1,2,3-Tricloropropano***	μg/L		BOURTS.	V	40 mL ***	lentamente	T.Q.	R	riempire lentamente	on the S	
	1,2-dibromoetano***	µg/L			100						100	
Viela.	MTBE	µg/L	yer .							L Cybra		
13.	ETBE	µg/L		10-05			CR			Tappo a vite		
4	Aromatici BTEXS (5) Clorobenzeni (9)	µg/L ·	X			3 x Vial	riempire lentamente			setto in tefion	orno	
	Alifatici Clorurati Cancerogeni (6)	μg/L μg/L			V	40 mL	senza	T.Q.	R	(lucido) a contatto con	Ě	
6.17	Alifatici Clorurati non Cancerogeni (7)*	pg/L		-			gorgo gli amen			liquido.	4	
	Alifatici Alogenati Cancerogeni (8)**	µg/L	7				to	217	0.00		di t	1
	Ftalati	µg/L_			M	Vetro scuro 1000 mL controtappo in teflon o foglio alluminio	NCR 5	T.Q.	R	controtappo in teriton (parte lucida) rivolto verso il fiquido. Evitare la plastica	Chimica 2 Via Marradi 114, Livorno	
	IPA (9 cogeneri)(4)	µg/L	X			Vetro scuro				non utilizzare	Ö	
	PCB	µg/L I-TEQ	X		M	1000 mL	CR	T.Q.	R	contenitori di trasferimento		
	Diossine e Furani	ng/L	X			Type Harry				in plastica		1
	Fitofarmaci (10 sostanze) (2)	µg/L	X		M	Vetro scuro 1000 mL	CR	T.Q.	R			
	Penta ed Esaclorobenzene	µg/L				1000 mL					1	
	Fenoli e Cloro fenoli (3)	µg/L			М	Vetro scuro 1000 mL		Acido Solforico pH < 2	R	non utilizzare contenitori di trasferimento in plastica		Mineral Investigation
3_	Cianuri Liberi	µg/L	X	4	G	PE 100 mL	NCR (al buio)	NaOH 6,25N (0,4mL/100mL)	R	7-71	Chimica 1 Firenze	1

- 11 10,8°C

Dipartimento di Livorno 57126 Livorno Via G. Marradi, 114 Tel. 055.32061 - Fax 055.5305615

PARTE A

VERBALE	DI /	ACQU	ISIZIONE	IN CAMPO D S	UCCESSIVA	N° 202204	06-006:	13-1	del	06/04/2	2022
Prelevato	da:	Simo	nini-Ramacc	iotti-Barontin	i	DENOMINAZI	ONE SITO	D: via Berl	inguer Sta	gno	
Destinatar	io R	dP: M	lentessi F.			CODICE SITO	(SISBON	N): LI1148			
Amministi	azio	ne co	mpetente: Co	mune Collesa	lvetti	FASCICOLO F	REEDOO	CS: LI.01.2	3.06/28.7	8	
			Company of the second s		toscritti <u>Letizia</u> Comune di <u>Col</u>						
N°. Pratica	RPAI	LAB (a	cura dell'Uff. ac	ccettazione):							
N° ARPALAB CAMPIONE (a cura dell'Uff. accettazione)		tino HONE 1	CAN	ODICE MPIONE ² pio: TB1C1)	CODICE PUNTO (esempio TB1)	Segmento Stratigrafico (da - a) (in metri)	P01	P02	P03	P04	P05
1940		X	S8 0-	1m			X	Х	- X		
1941		X	S8 1-	3,6 m			Х	X	Х		
1942		X	SS 0-				X	X	Х	X	
1948		X		-3,2m		,	X	X	X	8	
1344		X	S6 0-	*			X	X	Х		
1845		X	86 1-				X	X	X		
1946		X	S16 0				X	X	X	7	
1847		X		-330 m	31		X	Х	X		
1991		X	1	70/11			Χ	X	X		
T		X	-				X	Х	Х		
Procedura	di car	mpiona	amento		2/2006 e s.m.i Al		006 (Manu	ale per le ind	dagini ambie	ntali nei siti	contamin
Limiti di rife	rimer	nto			Tit.V, Par IV, D.Lgs 152/ Tit.V, Par IV, D.Lgs 152/ di tabella)			, All.1, D.M. 471 , All.1, D.M. 471		2	
-	Y				(CSR	0				
	Par	ametr	0	C	SR	Pa	rametro			CSR	
					3						
Note:											
150	rů c	20	e letto, conferma IHCARICA ta (Sigla buste):	70	Una copia viene co	onsegnata al Sig.	RAS	pou	MICO	. 8	in qualit
e aliquote lle ore _ <i>Q</i>	oer le	analis	il chimiche insier	me con il presenti	e verbale, sono co	onsegnate all'acc	ettazione d	lel Dipartime	ento ARPAT (di Livor	ao in

¹ Ad uso interno ARPAT ² CODICE CAMPIONE e CODICE PUNTO (sigla sondaggio) devono essere stabiliti al momento dell'acquisizione in accordo con la Parte.

Verbalizzante/i

PARTE B (da compilare a cura del Settore Laboratorio di Area vasta Costa)

ubaliquota Prova P	Parametro	U.d.M.			Tip	Contenitore	Riempimento	Stabiliz zazione	Conservazione	Note	Struttura SL AV	S.A.		
ASSESSED FOR STATE OF	Metalli (11 elementi) (1)	mg/kg s.s	X											
	Sb, Se, Sn, Tl. (a richiesta)	mg/kg s.s												
	Manganese (a richiesta)	mg/kg s.s				34			n 11		8 40 8	=		
	Ferro (a richi esta)	mg/kg s.s									arra	eta		
	Altri metalli:	-			1						5 2 -	2		
	Organo Stannici				-					*Contattare	5			
01	Cromo esavalente (Cr VI)				0			TO	K	28.00 80.10	-	_		
731	Penta ed Esaclorobenzene					da 1000 mL		1.12.	Refrigerazione			-		
		I-TEQ										licro		
	The second secon	µgkg s.s									Tax	2		
350		_			-						011			
54	Idrocarburi pesanti (C > 12)	1			-					95	0.8			
12	IPA (13 cogeneri)(4)			-	-						27			
		-			-						=======================================			
	Idrocarburi leggeri (C <= 12)	-	-		-						adi	J		
					1	Barattolo					2 re	8		
R.					1	vetro bianco			R		.00	AR		
70	Alifatici Clorurati Cancerogeni (6)	1			A	con tappo a		T.Q.	200		>	100		
	Alifatici Clorurati non Cancerogeni (7)				1		tamente		Refrigerazione					
	Alifatici Alogenati Cancerogeni (8)		-		1	mL	2.53.400.45.505							Micro Micro Micro Metalli
	Clorobenzeni (9)	1 elementi) (1) mg/kg s.s TI. (a richiesta) mg/kg s.s we (a richiesta) mg/kg s.s we (a richiesta) mg/kg s.s a richiesta) mg/kg s.s so Stannici mg/kg s.s a richiesta) mg/kg s.s a richi												
	Fenoli (9 sostanze) (3)	mg/kg s.s		1	С	di vetro bianco con tappo a vite		T.Q.		12	Chimica Siena			
03	Amianto	mg/kg s.s	X	ш	F	PE 1 Kg	NCR	T.Q.	Ambiente		UO RAAM Firenze	31 (
	Metalli(12 elementi) (10)	mg/L	X	dne										
	Tallio	mg/L		90 ac							, orn			
	Fluoruri	mg/L		30 96							-2	8		
P 04	Cloruri	mg/L		152) eman	C			T.Q			mica 11-12	allie		
	Solfati (SO ₂)	mg/L		DLgs		vite da 1000			rvemgerazione		Chimica farradi 114	Met		
	TDS Solidi disciolti totali	mg/L		All S,		mL					<u>8</u>			
	DOC	mg/L		Tab 2							>			
egenda		1			1						1			

Richiesta

Barrare il parametro di cui è richiesta l'analisi. Se la Cella è Annerità il parametro non è esecutto da AVI.
Tipologia di contenitore da usare per il prelievo; vedere documento Campionamento foto contenitori in Omnibus\AREA VASTA COSTA\Settore Laboratorio Indicare i limiti in deroga previsti nell'atto di autorizzazione
Indicare il materiale e il volume del contenitore da utilizzare.Esempio: vetro, vetro scuro 1L, PE = Polietilene.PP= Polipropilene.PET= PETereftalato, Vial 40 ml. Contenitors Riempimento

Indicare le modalità di riempimento del contentore. Esempio: CR= completamente riempito, all'orlo, non lasciare spazi vuoti. NCR = non completamente riempita lasciare circa 3 cm dall'orlo (NCR3), oppure 5 cm dall'orlo (NCR5)

Stabilizzazione Indicare le modalità stabilizzazione della sub aliquota. Esempio TQ = tal quale, HNO, 1mV106ml, HC1 fino pH=2. Indicare la temperatura di conservazione. A=ambiente, R=Refrigerato (1-10°C), C=da congelare entro 24 h Eventuali precauzioni a cui attenersi

Conservazione Note

Struttura AV Denominazione struttura Settore laboratorio a cui è destinata la sub aliquota. Indicato dal laboratorio secondo la propria organizzazione interna

SA Sezione Analitica. Ad uso dell'ufficio accettazione per lo smistamento

Codice sub aliquota utilizzato in AVCentro. Il codice viene indicato dal laboratorio ed è funzionale all'organizzazione interna dello stesso

Contattare Laboratorio

As, Be, Cd, Co, Cr, Hq, Ni, Pb, Cu, V, Zn.

Alachlor, Aldrin, HCH (alfa,beta,lindano), Atrazina, Chlordano, Dieldrin, Endrin, DDT's.

2-ciorofenolo, 3-clorofenolo, 4-ciorofenolo, 2,4-diclorofenolo, 2,4-5-triclorofenolo, 2,4-6-triclorofenolo, pentaciorofenolo, pentaciorofenolo, ter-ottiffenolo,

Benzo(a)antracene, Benzo(a)pirene, Benzo(b)fluorantene, Benzo(k)Fluorantene, Benzo(g,h,i)Perilene, Crisene, Dibenzo(a,e)pirene, Dibenzo(a,li)pirene, Dibenzo(a,h)antracene, Indeno(1,2,3-c,d)pirene, Pirene, Sommatoria IPA (25-34)

benzene, toluene, etilbenzene, xileni, stirene
Clorometano, Diclorometano, Triclorometano (cloroformio), cloruro di vinile, 1.2-dicloroetano, 1.1-dicloroetilene, Tricloroetilene, Tetracloroetilene (PCE),
1.1-dicloroetano, 1.2-dicloroetilene, 1.1-Tricloroetano, 1.2-dicloroetano, 1.2-tricloroetano, 1.2-tricloroetano, 1.2-tricloroetano, 1.2-tricloroetano, 1.2-diclorometano, bromodiclorometano, dibromoclorometano, dibromoclorometano, dibromoclorometano, 1.2-dicloroetano, 1.2-dicl

monoclorobenzene. 1.2-dictorobenzene. 1.4-dictorobenzene. 1.2.4-trictorobenzene. 1.2.4.5-tetractorobenzene. Eccetto centa ed esactorobenzene As, Ba, Cd, Cr, Hg,Mo, Ni, Pb, Cu, Sb, Se,Zn.

Note

Dipartimento di Livorno 57126 Livorno Via G. Marradi, 114 Tel. 055.32061 - Fax 055.5305615

PARTE A

VERBALE	DI	ACQU	ISIZIONE	CAMPO :	SUCCESSIVA	N° 202204	08-006	13-12	del	08/04/2	022
relevato	da:	Simo	nini-Bernini			DENOMINAZI	ONE SIT	O: via Berl	inguer Sta	gno	
Destinata	rio R	dP: M	lentessi F.			CODICE SITO	(SISBO)	N): LI1148			
Amminist	razio	ne co	mpetente: Com	nune Collesa	alvetti	FASCICOLO F	REEDO	CS: LI.01.2	3.06/28.7		
Alle ore	111	5 0	lel giorno 08/04/	/2022 i sotto	scritt <u>i</u> <u>Letizia Sim</u>	onini ,e Andrea	a Bernini	hanno effet	tuato un s	pralluogo	presso \
					d hanno prelevato						Post comment of
			cura dell'Uff. acce	SUSSISSIVILIAS SE							
N°	1	stino	Cura dell'Oli, acce	sttazione).				T	T		
ARPALAB		IONE 1	COD		CODICE PUNTO	Segmento Stratigrafico	P01	P02	P03	D04	DOE
(a cura dell'Uff.	D	L	CAMP (esemplo		(esempio TB1)	(da – a) (in metri)	P01	PUZ	P03	P04	P05
1085		X	530-10	m			X	X	X	He	
1081		X	S3 1m-	1.1.0			X	X	X	×	10.00
1986			33 Am.	9,40				-			
			0)								
No.											
					111	100	7.11.	Week and the second	A	Aller W	
Limiti di rife				☐ T.1, All.5 ☐ CSR (ve		06 e s.m.i col. B		., All.1, D.M. 471 ., All.1, D.M. 471			
	Par	ametr	0	C	SR	Pa	rametro			CSR	
							N 8				
10 -										10	
Note:											
presente v	verbal	e viene	e letto, confermato	e sottoscritto.	Una copia viene co	nsegnata al Sig.	HVISCO	o raspo	WIN	Atlia	in qualità
1509	wea	186	CARICATO						" HA	41 mecal	
Terza Al	iquota	sigilla	ta (Sigla buste):								
							6		,	11-204-	
e aliquote lle ore	per Je	analis	i chimiche insieme	con il present	te verbale, sono coi	nsegnate all'acce	ettazione d	el Dipartime		1) 08/04/	<u>/22</u> in d
Ad uso inte	rno AR	PAT NE e	CODICE PUNTO (sid	ala sondaggio) d	evono essere stabiliti a	I momento, dell'ac	auisizione in	accordo con	la Parte		
•	M	11 -	1/	/	The second of th			1)			
a Parte	1040	Nhe	MI			Verbalizza	nte/i	Ma -			

COMUNE DI COLLESALVETTI - AOOCCOL - 01 - 0012496 - Ingresso - 05/07/2022 - 15:43

PARTE B (da compilare a cura del Settore Laboratorio di Area vasta Costa)

ARPAT - LABORATORIO AREA VASTA COSTA Tabella B Bonifiche Terreno (aggiornamento 21/09/20)

Prova P	Parametro	U.d.M.	Richiesta (Barrare)	Limiti in deroga	Tip	Contenitore	Riempimento	Stabiliz zazione	Conservazione	Note	Struttura SL AV	S.A
**	Metalli (11 elementi) (1)	mg/kg s.s	×									
	Sb, Se, Sn, Tl. (a richiesta)	mg/kg s.s				1					Chimica 1 Via Marradi 114, Livorno	
	Manganese (a richiesta)	mg/kg s.s				1					2 d 0	=
	Ferro (a richiesta)	mg/kg s.s									arre	Metalli
	Altri metalli:	mg/kg s.s				1922 - 1 (01/01/02)					동물그	2
	Organo Stannici	mg/kg s.s	*			Barattolo				"Contattare La boratorio	Š	
OL	Cromo esavalente (Cr VI)	mg/kg s.s	×		c	vetro bianco tappo a vite	1	T.Q.	R	Laboratorio		
<u>VI</u>	Penta ed Esaclorobenzene Fitofarmaci (10 sostanze) (2)	mg/kg s.s mg/kg s.s	8		-	da 1000 mL		1.4.	Refrigerazione			1
		I-TEQ		-	1	a de la constantina della cons			photos Definition and St.	FI	1	C.
	Diossine e Furani	µg/kg s.s	X								1	Micro
	PCB	mg/kg s.s	8								2	.:
	Idrocarburi pesanti (C > 12)	mg/kg s.s	8								10%	
	IPA (13 cogeneri)(4)	mg/kg s.s	-		-						~ .	1.
	Esteri Acido Ftalico	mg/kg s.s				1					ica 174	1
	Idrocarburi leggeri (C <= 12)	mg/kg s.s	8		1						Chimica 2 Via Marradi 114, Livorno	
	MTBE	mg/kg s.s	2013		-	Barattolo					to E	8
	ETBE	mg/kg s.s			-	vetro bianco	CR		R		2	ARCO
02	Aromatici BTEXS (5) Alifatici Clorurati Cancerogeni (6)	mg/kg s.s mg/kg s.s	-		A	con tappo a	riempito comple-	T.Q.			5	
	Alifatici Clorurati non Cancerogeni (7)	mg/kg s.s			1	vite da 200	tamente		Refrigerazione		1	
	Alifatici Alogenati Cancerogeni (8)	mg/kg s.s		-	1	mL					1	
	Clorobenzeni (9)	mg/kg s.s										
)	Fenoli (9 sostanze) (3)	mg/kg s.s			С	1 x Barattolo di vetro bianco con tappo a vite da 100 mL		T.Q.	R Refrigerazione		Chimica Siena	
03	Amianto	mg/kg s.s	×		F	PE 1 Kg	NCR	T.Q.	Ambiente		UO RAAM Firenze	31 C
	Metalli(12 elementi) [10]											
	Metalli(12 elementi) (10) mg/L g						orno					
	Fluoruri	mg/L		Tab.2 All 5, Dt.gs152A06 CSC acque softerranee	С	2 x Barattolo di vetro bianco con tappo a vite da 1000			10		Chimica 1 Via Marradi 114, Livomo	B
PBU	Cloruri	mg/L						T.Q.	R		ica 7	Metalli e Ri
	Solfati (SO.)	mg/L	100000						Refrigerazione		Chin rradi	Meta
	TDS Solidi disciolti totali	mg/L		1,5 %		mL					- Ma	
	DOC		7. 10.11	b2/							\ \ \ \ \	1
	500	mg/L		<u></u>	-						-	-
egenda		1			L.,							
d.m. ichiesta po imiti ontenitore idempimento tabilizzazione onservazione ote truttura AV A)	Unità di misura del parametro Barrare il parametro di cui è richiesta fanalisi. Se li Tipologia di contenitore da usare per il prelievo, ve Indicare il materiale e il volume del contenitore da Indicare il materiale e il volume del contenitore da Indicare il modalità di riempimento del contenitore da Indicare le modalità di riempimento del contenito dall'orio (NCR3), oppure 5 cm dall'orio (NCR5) indicare le modalità stabilizzazione della sub aliqui Indicare la temperatura di conservazione: A-amb Eventuali precauzioni a cui attenersi Denominazione struttura Settore laboratorio a cui Sezione Analitica. Ad uso dell'ufficio accettazione Codice sub aliquota utilizzato in AV/Centro. Il codic Contattare Laboratorio As, Be, Cd, Cg, Cr, Hq, Nt, Pb, Cu, V, Zn, Alachlor, Aldrin, HCH (alfa, beta, lindano), Atrazina, 2-clorofenolo, 3-clorofenolo, 4-clorofenolo, 2,4-dic Benzo(a)antracene, Benzo(a)pirene, Benzo(b Dibenzo(a,h)antracene, Indeno(1,2,3-c,d)pirene, E benzene, toluene, etilibenzene, xileni, stirene Clorometano, Diclorometano, Triclorometano (clor	idere docum zazione utilizzare. Es re. Esempio ota. Esempio idente. R=Ref è destinata i per lo smista e viene indic Chilordano. lorofenolo. 2 offuorantene virene. Somi reformio). cli	emplo: vetre: CR= com o TQ = tal q frigerato (1- a sub alique amento cato dal labe Dieldrin, Err. 4.5-triclorc, matoria IPA oruro di vini	o, vetro si ppletamen uale, HNC 10°C), C= ota, Indica oratorio ecidrin, DDT fenolo, 2; [F luorante (25-34)]	coro toto curo 1 te rier te rier da co to dal da co 's. 4,6-tri ene,	contentori in On IL, PE = Polietilen mpito, all'orlo, no /100ml, HCI fino ingelare entro 24 laboratorio seco- nzionale all'organi clorofefenolo, per Benzo[g,h,i)Peril ano, 1,1-dicloroei	e PP= Polipropile n lasciare spazi pH=2. h ndo la propria or zzazione interna ntacioro fenolo, p ene, Crisene,	ene.PET = F vuoti. NCi qanizzazioi dello stessi -n-nonifenzo(;	ETereftalato, Vial 40 R = non completam ne interna so plo, ter-ottiffenolo, a,e)pirene, Dibenz	ml. ente riempita		
	 1.1-dictoroetano, 1,2-dictoroetilene, 1,1-Trictoroeta Bromoformio, 1,2-dibromoetano, bromodictoromet 				ioroet	tano, 1,2,3-triclor	opropano, 1,1,2,	2-tetracion	etano.			
	monoclorobenzene, 1.2-diclorobenzene, 1.4-diclo As, Ba, Cd, Cr, Hg, Mo, Ni, Pb, Cu, Sb, Se, Zn,				124	4.S-tetrackproben	zene. E ccetto ne	enta ed esa	clorobenzene.			

ALLEGATO 3

RDP TERRENI

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0018662 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campioni terreni - PZ1 (0.0-1.0m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: PZ1

Prelevato da: Personale ambiente s.p.a. - Raspolli Marco

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo nº: 22/COL_1

Data Prelievo: 22/03/2022

Data Accettazione: 22/03/2022

Data Inizio Analisi: 22/03/2022 Data Fine Analisi: 26/04/2022

arametro fletodo	U.M.	Risultato	Incertezza	D.Lqs 152/0 Colonna A	06 - Terreni Colonna B
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	100	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	5,9	±1,2	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,38	±0,08	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,13	±0,03	2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	5,7	±1,1	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	24	±5	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,16	±0,05	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,17	±0,03	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	28	±6	120	500
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	41	±8	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	18	±4	120	600

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0018662 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/ Colonna A	06 - Terreni Colonna B
Vanadio <i>EPA</i> 3051A 2007 + <i>EPA</i> 6020B 2014	mg/kg	17	±3	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	67	±13	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg ▶	0,85	±0,30	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg ▶	0,73	±0,26	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg ▶	1,1	±0,4	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg ▶	0,51	±0,18	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg ►	0,72	±0,25	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,96	±0,34	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg ►	0,14	±0,05	0,1	10
Dibenzo (a,l) pirene <i>EPA 3545A 2007 + EPA 8270E 2018</i>	mg/kg	< 0,0038		0,1	10
Dibenzo (a,i) pirene <i>EPA 3545A 2007 + EPA 8270E 2018</i>	mg/kg ►	0,12	±0,04	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,027	±0,009	0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0038		0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg ▶	0,72	±0,27	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	1,3	±0,5	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 <i>EPA 3545A 2007 + EPA 8270E 2018</i>	mg/kg	7,1		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0038		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0038		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0018662 del 04/07/2022

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.Lqs 152/ Colonna A	06 - Terreni Colonna B
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg ▶	0,14	±0,04	0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,00000067		0,00001	0,0001
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	14	±6		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	5,5	±2,2		
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	0,52	±0,21		
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,16			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,16			
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,16			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,16			
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,16			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,16			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,16			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,16			
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,16			
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	0,79	±0,31		
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,032			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	0,24	±0,10		
OCDD EPA 1613B 1994	ng/kg	43	±17		
OCDF EPA 1613B 1994	ng/kg	6,7	±2,7		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0018662 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0011	±0,0004	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,2		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	4,5	±1,3	50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	40,50	±4,05		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	59,50	±5,95		

(*) - Prova non accreditata ACCREDIA

▶ Valore uguale o superiore al limite indicato per il parametro

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

Limiti:

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

File firmato digitalmente.

LAB N° 0510L

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0018662 del 04/07/2022

Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0018662

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

LAB Nº 0510L

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0018663 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campioni terreni - PZ2 (0.0-0.1m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: PZ2

Prelevato da: Personale ambiente s.p.a. - Raspolli Marco

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo nº: 22/COL_1

Data Prelievo: 22/03/2022

Data Accettazione: 22/03/2022

Data Inizio Analisi: 22/03/2022 Data Fine Analisi: 26/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/0 Colonna A	06 - Terreni Colonna B
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	98	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	5,7	±1,1	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,42	±0,08	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	1,6	±0,3	2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	6,5	±1,3	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	34	±7	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,23	±0,07	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,15	±0,03	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	32	±6	120	500
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg ▶	170	±33	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	29	±6	120	600

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0018663 del 04/07/2022

Parametro					
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	19	±4	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg ▶	460	±91	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,086	±0,030	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,039	±0,013	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,10	±0,04	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,049	±0,017	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,078	±0,027	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,089	±0,031	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,014	±0,005	0,1	10
Dibenzo (a,I) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00047		0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,012	±0,004	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00047		0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00047		0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,071	±0,027	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,11	±0,04	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 <i>EPA 3545A 2007 + EPA 8270E 2018</i>	mg/kg	0,65		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00047		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00047		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0018663 del 04/07/2022

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.Lqs 152/ Colonna A	06 - Terreni Colonna B
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0091	±0,0027	0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,0000048		0,00001	0,0001
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	5,2	±2,1		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	3,8	±1,5		
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	0,43	±0,17		
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,19			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	0,46	±0,18		
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,19			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,19			
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,19			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,19			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,19			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,19			
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,19			
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	0,51	±0,21		
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,038			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	0,39	±0,16		
OCDD EPA 1613B 1994	ng/kg	38	±15		
OCDF EPA 1613B 1994	ng/kg	6,4	±2,6		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0018663 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0058	±0,0020	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,18		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	4,1	±1,1	50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	46,81	±4,68		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	53,19	±5,32		

(*) - Prova non accreditata ACCREDIA

▶ Valore uguale o superiore al limite indicato per il parametro

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

Limiti:

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

File firmato digitalmente.

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

LAB N° 0510L

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0018663 del 04/07/2022

Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0018663

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

LAB Nº 0510L

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0018664 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campioni terreni - PZ3 (0.0-0.1m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: PZ3

Prelevato da: Personale ambiente s.p.a. - Raspolli Marco

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo nº: 22/COL_1

Data Prelievo: 22/03/2022

Data Accettazione: 22/03/2022

Data Inizio Analisi: 22/03/2022 Data Fine Analisi: 26/04/2022

arametro letodo	U.M.	Risultato	Incertezza	D.Lqs 152/ Colonna A	06 - Terreni Colonna B
Residuo secco a 105°C DM 13/09/1999 SO nº 185 GU nº 248 21/10/1999 Met II.2	%p/p	93	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	2,8	±0,6	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,30	±0,06	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	< 0,057		2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	4,8	±1,0	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	15	±3	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	< 0,059		2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,035	±0,007	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	14	±3	120	500
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	9,9	±2,0	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	11	±2	120	600

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0018664 del 04/07/2022

Parametro						
Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/ Colonna A	06 - Terreni Colonna B	
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	12	±2	90	250	
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	34	±7	150	1500	
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0026	±0,0009	0,5	10	
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0017	±0,0006	0,1	10	
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0029	±0,0010	0,5	10	
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0013	±0,0004	0,5	10	
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0018	±0,0006	0,1	10	
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0026	±0,0009	5	50	
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00070	±0,00024	0,1	10	
Dibenzo (a,l) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00013		0,1	10	
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00043	±0,00015	0,1	10	
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00013		0,1	10	
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00013		0,1	10	
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0019	±0,0007	0,1	5	
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0031	±0,0011	5	50	
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,019		10	100	
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00013		0,01	1	
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1	
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00013		0,01	1	
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1	
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5	
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0018664 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/0 Colonna A	06 - Terreni Colonna B
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00027	±0,00008	0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,0000001		0,00001	0,0001
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	< 0,100			
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	0,43	±0,17		
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	< 0,100			
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,100			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,100			
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,100			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,100			
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,100			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,100			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,100			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,100			
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,100			
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,100			
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,020			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	< 0,020			
OCDD EPA 1613B 1994	ng/kg	5,4	±2,2		
OCDF EPA 1613B 1994	ng/kg	0,43	±0,17		

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

LAB Nº 0510L

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0018664 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/0	
				Colonna A	Colonna B
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,000059		0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,2		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	< 1,1		50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	28,16	±2,82		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	71,84	±7,18		

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

Limiti:

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

File firmato digitalmente.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

LAB N° 0510L

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0018664 del 04/07/2022

Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0018664

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

LAB Nº 0510L

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0018665 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campioni terreni - PZ4 (0.0-0.1m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: PZ4

Prelevato da: Personale ambiente s.p.a. - Raspolli Marco

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo nº: 22/COL_1

Data Prelievo: 22/03/2022

Data Accettazione: 22/03/2022

Data Inizio Analisi: 22/03/2022 Data Fine Analisi: 26/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/ Colonna A	06 - Terreni Colonna B
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	79	±4		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	5,0	±1,0	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,39	±0,08	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	< 0,060		2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	8,6	±1,7	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	47	±10	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,11	±0,03	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,052	±0,010	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	49	±10	120	500
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	13	±3	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	17	±3	120	600

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0018665 del 04/07/2022

Parametro	U.M.	Risultato	Incertezza	D.Lqs 152/	06 - Terreni	
Metodo			incertezza	Colonna A	Colonna B	
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	17	±4	90	250	
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	39	±8	150	1500	
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0028	±0,0010	0,5	10	
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00067	±0,00023	0,1	10	
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0045	±0,0016	0,5	10	
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0011	±0,0004	0,5	10	
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00095	±0,00033	0,1	10	
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0028	±0,0010	5	50	
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00033	±0,00012	0,1	10	
Dibenzo (a,I) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00014		0,1	10	
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00015	±0,00005	0,1	10	
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00014		0,1	10	
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00014		0,1	10	
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0017	±0,0006	0,1	5	
Pirene <i>EPA 3545A 2007 + EPA 8270E 2018</i>	mg/kg	0,0022	±0,0008	5	50	
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,017		10	100	
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00014		0,01	1	
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1	
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00014		0,01	1	
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1	
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5	
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0018665 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/0 Colonna A	6 - Terreni Colonna B
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,000000024		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	8,6	±3,4		
OCDF EPA 1613B 1994	ng/kg	3,6	±1,5		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	< 0,11			
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	0,99	±0,40		
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	0,21	±0,09		
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,11			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,11			
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,11			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,11			
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,11			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,11			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,11			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,11			
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,11			
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,11			
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,023			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	< 0,023			

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0018665 del 04/07/2022

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.Lqs 152/ Colonna A	06 - Terreni Colonna B	
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,000098		0,06	5	
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,21		10	250	
Idrocarburi C>12 ISO 16703:2004	mg/kg	1,5	±0,4	50	750	
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente				
* Amianto (ricerca quantitativa) * DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000	
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.	%p/p 1	27,68	±2,77			
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.	%p/p 1	72,32	±7,23			

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

Limiti:

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

File firmato digitalmente.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

LAB N° 0510L

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0018665 del 04/07/2022

Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0018665

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

LAB Nº 0510L

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0018666 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campioni terreni - PZ5 (0.0-0.1m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: PZ5

Prelevato da: Personale ambiente s.p.a. - Raspolli Marco

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo nº: 22/COL_1

Data Prelievo: 22/03/2022

Data Accettazione: 22/03/2022

Data Inizio Analisi: 22/03/2022 Data Fine Analisi: 26/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/ Colonna A	06 - Terreni Colonna B
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	92	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	5,8	±1,2	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,43	±0,09	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	< 0,085		2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	6,9	±1,4	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	23	±5	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,18	±0,05	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,10	±0,02	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	25	±5	120	500
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	15	±3	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	15	±3	120	600

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0018666 del 04/07/2022

250 250 10 10 10 10 10 10 10 10 10 10
500 10 10 10 10 10 10 50
10 10 10 10 10 10
10 10 10 10 50
10 10 10 50
10 10 50
10
50
10
10
10
10
10
10
5
50
100
1
0,1
1
0,1
0,5
0,5
11

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0018666 del 04/07/2022

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.Lqs 152/ Colonna A	06 - Terreni Colonna B
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0030	±0,0009	0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,00000037		0,00001	0,0001
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	1,3	±0,5		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	0,89	±0,36		
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	< 0,17			
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,17			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,17			
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,17			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,17			
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,17			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,17			
1,2,3,7,8-PeCDD <i>EPA</i> 1613B 1994	ng/kg	< 0,17			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,17			
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,17			
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,17			
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,035			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	< 0,035			
OCDD EPA 1613B 1994	ng/kg	14	±6		
OCDF EPA 1613B 1994	ng/kg	1,1	±0,4		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0018666 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/06 Colonna A	6 - Terreni Colonna B
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00030	±0,00011	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,23		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	< 1,7		50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
* Amianto (ricerca quantitativa) * DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	40,94	±4,09		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	59,06	±5,91		

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

Limiti:

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

File firmato digitalmente.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

LAB N° 0510L

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0018666 del 04/07/2022

Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0018666

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

LAB Nº 0510L

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022941 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S1 (1-4.1 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: S1

Prelevato da: Personale ambiente s.p.a. - Mannocci - Raspolli

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 7/collesalvetti

Data Prelievo: 08/04/2022

Data Accettazione: 08/04/2022

Data Inizio Analisi: 08/04/2022 Data Fine Analisi: 19/05/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/06 Colonna A	- Terreni Colonna B	
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	ирН	9,1	±0,2			
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	9,0	±1,8			
Idrocarburi alifatici C5 - C8 MADEP VPH 2017	mg/kg	< 0,5				
Idrocarburi alifatici C9 - C12 MADEP VPH 2017	mg/kg	< 0,5				
Idrocarburi alifatici C13 - C18	mg/kg	14	±4			
MADEP EPH 2004						
, Idrocarburi alifatici C19 - C36	mg/kg	76	±23			
MADEP EPH 2004						
, Idrocarburi aromatici C9 - C10 MADEP VPH 2017	mg/kg	< 0,5				
Idrocarburi aromatici C11 - C12 MADEP EPH 2004 + EPA 8270E 2018	mg/kg	< 0,05				
Idrocarburi aromatici C13 - C22 MADEP EPH 2004	mg/kg	0,38	±0,11			
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	95	±5			
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	8,5	±1,7	20	50	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022941 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152 Colonna A	/06 - Terreni Colonna B
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,98	±0,20	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	< 0,21		2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	14	±3	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	67	±13	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,48	±0,14	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,13	±0,03	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	77	±15	120	500
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	29	±6	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	29	±6	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	36	±7	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	86	±17	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,037	±0,013	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,026	±0,009	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,019	±0,007	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,023	±0,008	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,015	±0,005	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,049	±0,017	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0042	±0,0015	0,1	10
Dibenzo (a,l) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0075	±0,0026	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0053	±0,0019	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0025		0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0067	±0,0024	0,1	10

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022941 del 04/07/2022

Parametro						
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B	
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,016	±0,006	0,1	5	
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,10	±0,04	5	50	
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,31		10	100	
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00051		0,01	1	
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00051		0,01	0,1	
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00051		0,01	1	
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00051		0,01	0,1	
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00051		0,01	0,5	
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00051		0,01	0,5	
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1	
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0012	±0,0004	0,01	0,1	
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00051		0,01	0,1	
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00051		0,01	2	
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,00000064		0,00001	0,0001	
OCDD EPA 1613B 1994	ng/kg	65	±26			
OCDF EPA 1613B 1994	ng/kg	2,6	±1,0			
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	7,6	±3,1			
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	2,3	±0,9			
1,2,3,4,7,8,9-HpCDF <i>EPA 1613B 1994</i>	ng/kg	< 0,42				
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,42				
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	0,50	±0,20			

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0022941 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/06 - Colonna A	· Terreni Colonna B
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,42			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,42			
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,42			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,42			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,42			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,42			
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,42			
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	0,61	±0,25		
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,085			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	1,2	±0,5		
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00063		0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,18		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	180	±51	50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	> 99,90			
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	< 0,10			

(*) - Prova non accreditata ACCREDIA

▶ Valore uguale o superiore al limite indicato per il parametro

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

LAB Nº 0510L

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022941 del 04/07/2022

limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

Limiti:

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

File firmato digitalmente.

Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022941

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

LAB Nº 0510L

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022940 del 04/07/2022

Spett.

Ambiente s.p.a.

Via Frassina, 21
54033 Nazzano - Carrara (MS)

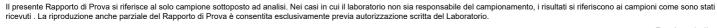
Denominazione del Campione: Campione di terreno - S1 (0-1 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: S1

Prelevato da: Personale ambiente s.p.a. - Mannocci - Raspolli

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)


Verbale di prelievo n°: 6/collesalvetti

Data Prelievo: 08/04/2022

Data Accettazione: 08/04/2022

Data Inizio Analisi: 08/04/2022 Data Fine Analisi: 04/05/2022

Parametro <i>Metod</i> o	U.M.	Risultato	Incertezza	D.Lgs 152 Colonna A	06 - Terreni Colonna B	
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	ирН	9,0	±0,2			
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	9,9	±2,0			
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	89	±5			
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	5,4	±1,1	20	50	
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,40	±0,08	2	10	
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,12	±0,02	2	15	
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	6,8	±1,4	20	250	
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	28	±6	150	800	
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,17	±0,05	2	15	
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,14	±0,03	1	5	
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	34	±7	120	500	

Via Frassina, 21 - Carrara (MS) - 54033

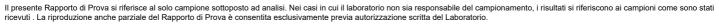
Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0022940 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Las 152/	06 - Terreni Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	29	±6	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	24	±5	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	16	±3	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	57	±11	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,021	±0,008	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,020	±0,007	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,020	±0,007	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,021	±0,007	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,022	±0,008	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,031	±0,011	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0053	±0,0019	0,1	10
Dibenzo (a,l) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0099	±0,0035	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0043	±0,0015	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0011		0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0082	±0,0029	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,020	±0,007	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,036	±0,013	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,22		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00021		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00021		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00021		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00021		0,01	0,1

Via Frassina, 21 - Carrara (MS) - 54033


Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022940 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Las 152/ Colonna A	06 - Terreni Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00021		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00021		0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0017	±0,0005	0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00021		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00021		0,01	2
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00	±0,00	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,18		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	11	±3	50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	42,83	±4,28		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	57,17	±5,72		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

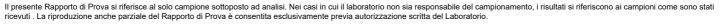
segue Rapporto di prova nº: 22LA0022940 del 04/07/2022

22LA0022940/01 eluato UNI 10802:2013 DM 05/02/1998

Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
Residuo secco a 105°C UNI EN 14346:2007	%p/p	84	±4		
Conducibilità UNI EN 12457-2:2004 + UNI EN 27888:1995	μS/cm	197	±12		
Nitrati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0,46	±0,05	50	
Fluoruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0,67	±0,07	1,5	
Solfati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	4,5	±0,5	250	
Cloruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0,78	±0,09	100	
Cianuri UNI EN 12457-2:2004 + APAT CNR IRSA 4070 Man 29 2003	μg/l	< 10		50	
Bario UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0,050		1	
Rame UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	0,0053	±0,0011	0,05	
Zinco UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0,020		3	
Berillio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,40		10	
Cobalto UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 5,0		250	
Nichel UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	9,7	±1,9	10	
Vanadio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 5,0		250	
Arsenico UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	1,2	±0,2	50	
Cadmio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,50		5	
Cromo totale UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	17	±3	50	
Piombo UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	1,8	±0,4	50	
Selenio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 1,0		10	
Mercurio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,10		1	
Amianto (ricerca quantitativa) DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI EN 1245	mg/l	< 10		₄ 30	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231


PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0022940 del 04/07/2022

22LA0022940/01 eluato UNI 10802:2013 DM 05/02/1998

	Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
	Richiesta chimica di ossigeno (COD) UNI EN 12457-2:2004 + ISO 15705:2002	mg/l	16	±4	30	
*	pH DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI EN 1	upH 12457-2:2004 + AF	7,71 PAT CNR IRSA 2060	±0,20 Man 29 2003	5,5÷12	

LAB Nº 0510L

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022940 del 04/07/2022

22LA0022940/02 RE1 - First re-analysis/re-extraction sample

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/0 Colonna A	06 - Terreni Colonna B
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,00000057		0,00001	0,0001
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	5,4	±2,2		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	2,8	±1,1		
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	< 0,17			
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,17			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	0,48	±0,19		
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	0,57	±0,23		
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	0,40	±0,16		
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	0,42	±0,17		
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,17			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,17			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	0,37	±0,15		
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	0,62	±0,25		
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	0,30	±0,12		
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,034			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	0,28	±0,11		
OCDD EPA 1613B 1994	ng/kg	36	±14		
OCDF EPA 1613B 1994	ng/kg	3,7	±1,5		

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022940 del 04/07/2022

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al relativo RL.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

Limiti:

Allegato 3 al Decreto Ministeriale del 05/02/1998 Individuazione dei rifiuti non pericolosi sottoposti alle procedure semplificate di recupero ai sensi degli articoli 31 e 33 del decreto legislativo 5 febbraio 1997, n. 22 Concentrazioni limite.

Terreni ad uso Verde pubblico, privato e residenziale, commerciale e industriale Dlgs152:2006: D.Lgs 152/06 - Terreni: Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale) Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

File firmato digitalmente da:

Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022940

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

I AR Nº 05101

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022939 del 04/07/2022

Spett. **Ambiente s.p.a.** Via Frassina, 21 54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S2 (1-4.4 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: S2

Prelevato da: Personale ambiente s.p.a. - Mannocci - Raspolli

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 4/collesalvetti

Data Prelievo: 08/04/2022

Data Accettazione: 08/04/2022

Data Inizio Analisi: 08/04/2022 Data Fine Analisi: 19/05/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/06 - Terr Colonna A Colo	reni nna B
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	upH	9,1	±0,2		
Idrocarburi alifatici C5 - C8 MADEP VPH 2017	mg/kg	< 0,5			
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	11	±2		
Idrocarburi alifatici C9 - C12 MADEP VPH 2017	mg/kg	< 0,5			
ldrocarburi alifatici C13 - C18	mg/kg	15	±5		
MADEP EPH 2004					
Idrocarburi alifatici C19 - C36	mg/kg	100	±31		
MADEP EPH 2004					
Idrocarburi aromatici C9 - C10 MADEP VPH 2017	mg/kg	< 0,5			
Idrocarburi aromatici C11 - C12 MADEP EPH 2004 + EPA 8270E 2018	mg/kg	< 0,05			
Idrocarburi aromatici C13 - C22 MADEP EPH 2004	mg/kg	1,4	±0,4		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	89	±4		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	10	±2	20 5	0

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Pagina 1 di 7

LAB Nº 0510L

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022939 del 04/07/2022

Parametro				_	1
Metodo	U.M.	Risultato	Incertezza	D.Las 152 Colonna A	06 - Terreni Colonna B
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	1,0	±0,2	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,25	±0,05	2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	15	±3	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	76	±15	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,47	±0,14	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,29	±0,06	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	92	±18	120	500
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	40	±8	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	37	±8	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	38	±8	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	100	±21	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,070	±0,024	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,12	±0,04	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,098	±0,034	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,073	±0,025	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,11	±0,04	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,24	±0,08	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,036	±0,013	0,1	10
Dibenzo (a,l) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,064	±0,022	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,066	±0,023	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,025	±0,009	0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,025	±0,009	0,1	10

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0022939 del 04/07/2022

Parametro						—
Metodo	U.M.	Risultato	Incertezza	D.Las 152 Colonna A	/06 - Terreni Colonna B	
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,081	±0,031	0,1	5	
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,12	±0,04	5	50	
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 <i>EPA 3545A 2007 + EPA 8270E 2018</i>	mg/kg	1,1		10	100	
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0011		0,01	1	
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0011		0,01	0,1	
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0011		0,01	1	
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0011		0,01	0,1	
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0011		0,01	0,5	
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0011		0,01	0,5	
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1	
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,093	±0,028	0,01	0,1	
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0011		0,01	0,1	
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0011		0,01	2	
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0013		0,06	5	
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,21		10	250	
Idrocarburi C>12 ISO 16703:2004	mg/kg	130	±35	50	750	
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Ass nte	e Assente				
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000	
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	> 99,90				
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	< 0,10				

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

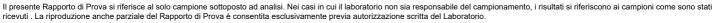
segue Rapporto di prova n°: 22LA0022939 del 04/07/2022

22LA0022939/01 eluato UNI 10802:2013 DM 05/02/1998

Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
Residuo secco a 105°C UNI EN 14346:2007	%p/p	74	±4		
Conducibilità UNI EN 12457-2:2004 + UNI EN 27888:1995	μS/cm	361	±22		
Nitrati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0,52	±0,06	50	
Fluoruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0,56	±0,06	1,5	
Solfati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	54	±6	250	
Cloruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	2,5	±0,3	100	
Cianuri UNI EN 12457-2:2004 + APAT CNR IRSA 4070 Man 29 2003	μg/l	< 10		50	
Bario UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0,050		1	
Rame UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0,0050		0,05	
Zinco UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0,020		3	
Berillio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,40		10	
Cobalto UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 5,0		250	
Nichel UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	8,0	±1,6	10	
Vanadio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 5,0		250	
Arsenico UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	2,0	±0,4	50	
Cadmio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,50		5	
Cromo totale UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	14	±3	50	
Piombo UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	1,3	±0,3	50	
Selenio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	µg/I	< 1,0		10	
Mercurio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,10		1	
Amianto (ricerca quantitativa) DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI EN 1245	mg/l	< 10		30	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231


PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022939 del 04/07/2022

22LA0022939/01 eluato UNI 10802:2013 DM 05/02/1998

	Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
	Richiesta chimica di ossigeno (COD) UNI EN 12457-2:2004 + ISO 15705:2002	mg/l	18	±5	30	
*	pH DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI EN 1	upH 12457-2:2004 + AF	7,67 PAT CNR IRSA 2060	±0,20 Man 29 2003	5,5÷12	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0022939 del 04/07/2022

22LA0022939/02 RE1 - First re-analysis/re-extraction sample

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/0 Colonna A	6 - Terreni Colonna B
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,0000014		0,00001	0,0001
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	12	±5		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	5,5	±2,2		
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	< 0,39			
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	0,51	±0,20		
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	0,95	±0,38		
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	0,70	±0,28		
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	0,70	±0,28		
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	1,1	±0,4		
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,39			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,39			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	0,75	±0,30		
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	0,55	±0,22		
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	0,86	±0,34		
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	0,089	±0,035		
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	1,2	±0,5		
OCDD EPA 1613B 1994	ng/kg	100	±42		
OCDF EPA 1613B 1994	ng/kg	6,9	±2,8		

(*) - Prova non accreditata ACCREDIA

▶ Valore uguale o superiore al limite indicato per il parametro

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022939 del 04/07/2022

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al relativo RL.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

Limiti:

Allegato 3 al Decreto Ministeriale del 05/02/1998 Individuazione dei rifiuti non pericolosi sottoposti alle procedure semplificate di recupero ai sensi degli articoli 31 e 33 del decreto legislativo 5 febbraio 1997, n. 22 Concentrazioni limite.

Terreni ad uso Verde pubblico, privato e residenziale, commerciale e industriale Dlgs152:2006: D.Lgs 152/06 - Terreni: Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale) Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

File firmato digitalmente da:

Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022939

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

I AR Nº 05101

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022938 del 04/07/2022

Spett. **Ambiente s.p.a.** Via Frassina, 21 54033 Nazzano - Carrara (MS)

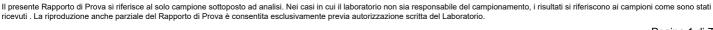
Denominazione del Campione: Campione di terreno - S2 (0-1 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: S2

Prelevato da: Personale ambiente s.p.a. - Mannocci - Raspolli

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)


Verbale di prelievo n°: 3/collesalvetti

Data Prelievo: 08/04/2022

Data Accettazione: 08/04/2022

Data Inizio Analisi: 08/04/2022 Data Fine Analisi: 04/05/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/06 - Terreni Colonna A Colonna B	
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	ирН	9,0	±0,2		
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	12	±2		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	95	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	8,3	±1,7	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,42	±0,08	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,15	±0,03	2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	6,6	±1,3	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	30	±6	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,30	±0,09	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,29	±0,06	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	37	±7	120	500

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022938 del 04/07/2022

Parametro	11.54	Diag-14-4-			
Metodo	U.M.	Risultato	Incertezza	D.Las 152/ Colonna A	06 - Terreni Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	50	±10	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	29	±6	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	29	±6	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	69	±14	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	1,1	±0,4	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	1,4	±0,5	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	1,1	±0,4	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,69	±0,24	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,77	±0,27	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	1,6	±0,6	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,097	±0,034	0,1	10
Dibenzo (a,l) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,12	±0,04	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,20	±0,07	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,076	±0,026	0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,19	±0,07	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,51	±0,19	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	2,1	±0,7	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	9,9		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00048		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00048		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00048		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00048		0,01	0,1

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022938 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Las 152/	06 - Terreni Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00048		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00048		0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,046	±0,014	0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00048		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00048		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,00000087		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	81	±32		
OCDF EPA 1613B 1994	ng/kg	10	±4		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	12	±5		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	8,0	±3,2		
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	0,35	±0,14		
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,20			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	0,73	±0,29		
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	0,83	±0,33		
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,20			
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	1,1	±0,5		
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,20			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	0,24	±0,10		
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,20			
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,20			
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	0,33	±0,13		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0022938 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Las 152/0 Colonna A	06 - Terreni Colonna B
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,039			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	0,23	±0,09		
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0006		0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,22		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	13	±4	50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Presente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	48,08	±4,81		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	51,92	±5,19		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0022938 del 04/07/2022

22LA0022938/01 eluato UNI 10802:2013 DM 05/02/1998

Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
Residuo secco a 105°C UNI EN 14346:2007	%p/p	84	±4		
Conducibilità UNI EN 12457-2:2004 + UNI EN 27888:1995	μS/cm	192	±12		
Nitrati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0,60	±0,07	50	
Fluoruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0,48	±0,05	1,5	
Solfati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	4,6	±0,5	250	
Cloruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0,66	±0,07	100	
Cianuri UNI EN 12457-2:2004 + APAT CNR IRSA 4070 Man 29 2003	μg/l	< 10		50	
Bario UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0,050		1	
Rame UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0,0050		0,05	
Zinco UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0,020		3	
Berillio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,40		10	
Cobalto UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 5,0		250	
Nichel UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	7,5	±1,5	10	
Vanadio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	6,7	±1,3	250	
Arsenico UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	2,1	±0,4	50	
Cadmio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,50		5	
Cromo totale UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	15	±3	50	
Piombo UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	2,5	±0,5	50	
Selenio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 1,0		10	
Mercurio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,10		1	
Amianto (ricerca quantitativa) DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI EN 1245	mg/l	< 10		30	

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

LAB Nº 0510L

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022938 del 04/07/2022

22LA0022938/01 eluato UNI 10802:2013 DM 05/02/1998

Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
Richiesta chimica di ossigeno (COD) UNI EN 12457-2:2004 + ISO 15705:2002	mg/l	10	±3	30	
* pH DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI EN	upH 12457-2:2004 + AF	7,99 PAT CNR IRSA 2060	±0,20 Man 29 2003	5,5÷12	

(*) - Prova non accreditata ACCREDIA

▶ Valore uguale o superiore al limite indicato per il parametro

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al relativo RL.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

Limiti:

Allegato 3 al Decreto Ministeriale del 05/02/1998 Individuazione dei rifiuti non pericolosi sottoposti alle procedure semplificate di recupero ai sensi degli articoli 31 e 33 del decreto legislativo 5 febbraio 1997, n. 22 Concentrazioni limite.

Terreni ad uso Verde pubblico, privato e residenziale, commerciale e industriale Dlgs152:2006: D.Lgs 152/06 - Terreni:

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

Note: La presenza di amianto è relativa a minime tracce di fibrille asbestiformi disperse nella matrice terrosa, qualificate (in MOPOL, MOCF e con l'ausilio di liquidi di Cargille) come fibre di Crisotilo.

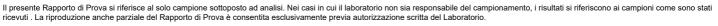
File firmato digitalmente da:

Responsabile Chimico
Dott. Fallica Mauro Placido
N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E
DEI FISICI DEL VENETO PD RO VI VR

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

I AR Nº 05101

Via Frassina, 21 - Carrara (MS) - 54033


Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022938 del 04/07/2022

Fine del rapporto di prova n° 22LA0022938

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022937 del 04/07/2022

Spett.

Ambiente s.p.a.

Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S3 (1-4.4 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: S3

Prelevato da: Personale ambiente s.p.a. - Mannocci - Raspolli

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 2/collesalvetti

Data Prelievo: 08/04/2022

Data Accettazione: 08/04/2022

Data Inizio Analisi: 08/04/2022 Data Fine Analisi: 19/05/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/06 - Terreni Colonna A Colonna B	
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	upH	9,0	±0,2		
* FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	7,4	±1,5		
Idrocarburi alifatici C5 - C8 MADEP VPH 2017	mg/kg	< 0,5			
Idrocarburi alifatici C9 - C12 MADEP VPH 2017	mg/kg	< 0,5			
k Idrocarburi alifatici C13 - C18	mg/kg	23	±7		
MADEP EPH 2004					
Idrocarburi alifatici C19 - C36	mg/kg	120	±37		
MADEP EPH 2004					
Idrocarburi aromatici C9 - C10 MADEP VPH 2017	mg/kg	< 0,5			
* Idrocarburi aromatici C11 - C12 MADEP EPH 2004 + EPA 8270E 2018	mg/kg	< 0,05			
Idrocarburi aromatici C13 - C22 MADEP EPH 2004	mg/kg	0,89	±0,27		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	93	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	9,5	±1,9	20 50	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022937 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Las 152 Colonna A	2/06 - Terreni Colonna B
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,81	±0,16	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,25	±0,05	2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	23	±5	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	100	±20	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,61	±0,18	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,18	±0,04	1	5
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	37	±7	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	33	±7	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	34	±7	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	93	±19	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,051	±0,018	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,066	±0,023	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,043	±0,015	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,048	±0,017	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,043	±0,015	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,084	±0,029	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,010	±0,004	0,1	10
Dibenzo (a,l) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,020	±0,007	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,014	±0,005	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0026		0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,017	±0,006	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,047	±0,018	0,1	5

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022937 del 04/07/2022

Parametro					
Metodo	U.M.	Risultato	Incertezza	D.Las 152/ Colonna A	06 - Terreni Colonna B
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,10	±0,04	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 <i>EPA 3545A 2007 + EPA 8270E 2018</i>	mg/kg	0,55		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00052		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00052		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00052		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00052		0,01	0,1
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00052		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00052		0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0081	±0,0024	0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00052		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00052		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,0000015		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	430	±170		
OCDF EPA 1613B 1994	ng/kg	36	±14		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	23	±9		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	11	±4		
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	0,63	±0,25		
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	0,53	±0,21		
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,43			
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	1,1	±0,4		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022937 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Las 152/ Colonna A	06 - Terreni Colonna B	
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	0,71	±0,28	_		
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	1,0	±0,4			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,43				
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,43				
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,43				
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,43				
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	0,56	±0,23			
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,085				
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	0,37	±0,15			
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00065		0,06	5	
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,22		10	250	
Idrocarburi C>12 ISO 16703:2004	mg/kg	170	±49	50	750	
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente				
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000	
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	> 99,90				
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	< 0,10				

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022937 del 04/07/2022

22LA0022937/01 eluato UNI 10802:2013 DM 05/02/1998

Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
Residuo secco a 105°C UNI EN 14346:2007	%p/p	79	±4		
Conducibilità UNI EN 12457-2:2004 + UNI EN 27888:1995	μS/cm	441	±27		
Nitrati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	< 0,1		50	
Fluoruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0,54	±0,06	1,5	
Cloruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	4,0	±0,4	100	
Cianuri UNI EN 12457-2:2004 + APAT CNR IRSA 4070 Man 29 2003	μg/l	< 10		50	
Bario UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0,050		1	
Rame UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0,0050		0,05	
Zinco UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0,020		3	
Berillio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,40		10	
Cobalto UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 5,0		250	
Nichel UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	12	±2	10	
Vanadio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	5,6	±1,1	250	
Arsenico UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	3,4	±0,7	50	
Cadmio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,50		5	
Cromo totale UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	14	±3	50	
Piombo UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 1,0		50	
Selenio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 1,0		10	
Mercurio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,10		1	
Amianto (ricerca quantitativa) DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI EN 1245	mg/l 7-2:2004 + DM	< 10 1 06/09/1994 GU n° 2	288 10/12/1994 All 2	A 30	
Richiesta chimica di ossigeno (COD) UNI EN 12457-2:2004 + ISO 15705:2002	mg/l	27	±7	30	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022937 del 04/07/2022

22LA0022937/01 eluato UNI 10802:2013 DM 05/02/1998

Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
* pH * DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI EN 1245	upH 7-2:2004 + APAT	8,09 CNR IRSA 2060 I	±0,20 Man 29 2003	5,5÷12	

22LA0022937/02 DL1 - First dilution sample

Parametro Metodo	U.M.	Risultato	Incertezza	D.Las 152/ Colonna A	06 - Terreni Colonna B	
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	240	±48	120	500	

22LA0022937/03 DL2 - Second dilution sample - eluato UNI 10802:2013 DM 05/02/1998

Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
Solfati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	67	±7	250	

(*) - Prova non accreditata ACCREDIA

▶ Valore uguale o superiore al limite indicato per il parametro

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al relativo RL.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

Limiti:

Allegato 3 al Decreto Ministeriale del 05/02/1998 Individuazione dei rifiuti non pericolosi sottoposti alle procedure semplificate di recupero ai sensi

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022937 del 04/07/2022

degli articoli 31 e 33 del decreto legislativo 5 febbraio 1997, n. 22 Concentrazioni limite.

Terreni ad uso Verde pubblico, privato e residenziale, commerciale e industriale Dlgs152:2006: D.Lgs 152/06 - Terreni: Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)
Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

File firmato digitalmente da:

Responsabile Chimico
Dott. Fallica Mauro Placido
N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E
DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022937

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022936 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S3 (0-1 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: \$3

Prelevato da: Personale ambiente s.p.a. - Mannocci - Raspolli

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 1/collesalvetti

Data Prelievo: 08/04/2022

Data Accettazione: 08/04/2022

Data Inizio Analisi: 08/04/2022 Data Fine Analisi: 26/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/ Colonna A	06 - Terreni Colonna B
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	upH	8,9	±0,2		
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	9,1	±1,8		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	91	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	6,9	±1,4	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,46	±0,09	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	< 0,11		2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	7,9	±1,6	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	33	±7	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,27	±0,08	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,13	±0,03	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	42	±8	120	500

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022936 del 04/07/2022

Parametro					
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	26	±5	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	20	±4	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	19	±4	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	51	±10	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,032	±0,011	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,044	±0,016	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,022	±0,008	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,034	±0,012	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,031	±0,011	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,054	±0,019	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0063	±0,0022	0,1	10
Dibenzo (a,I) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,012	±0,004	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,010	±0,004	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0026		0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,012	±0,004	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,031	±0,012	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,065	±0,023	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,35		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00053		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00053		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00053		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00053		0,01	0,1

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022936 del 04/07/2022

Parametro	U.M.	Risultato	Incertezza	D.Lgs 152/0	
Metodo			IIICEI (EZZA	Colonna A	Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00053		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00053		0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0034	±0,0010	0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00053		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00053		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,00000018		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	24	±10		
OCDF EPA 1613B 1994	ng/kg	2,2	±0,9		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	3,9	±1,6		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	2,2	±0,9		
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	< 0,20			
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,20			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	0,33	±0,13		
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,20			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	0,25	±0,10		
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	0,20	±0,08		
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,20			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,20			
1,2,3,7,8-PeCDF <i>EPA</i> 1613B 1994	ng/kg	< 0,20			
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,20			
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,20			

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022936 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/0 Colonna A	06 - Terreni Colonna B
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,040			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	0,17	±0,07		
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00066		0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,22		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	7,6	±2,1	50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	51,75	±5,17		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	48,25	±4,83		

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022936 del 04/07/2022 File firmato digitalmente.

> Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022936

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022863 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S4 (1-3.9 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: \$4

Prelevato da: Personale ambiente s.p.a. - Mannocci / Raspolli

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 7/collesalvetti

Data Prelievo: 07/04/2022

Data Accettazione: 08/04/2022

Data Inizio Analisi: 08/04/2022 Data Fine Analisi: 27/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	ирН	9,4	±0,2		
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	3,5	±0,7		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	77	±4		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	4,9	±1,0	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,45	±0,09	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,10	±0,02	2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	6,3	±1,3	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	21	±4	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,15	±0,05	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	< 0,045		1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	24	±5	120	500

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022863 del 04/07/2022

Parametro					
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	21	±4	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	18	±4	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	15	±3	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	49	±10	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,045	±0,016	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,045	±0,016	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,034	±0,012	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,029	±0,010	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,021	±0,007	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,064	±0,022	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0033	±0,0012	0,1	10
Dibenzo (a,I) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0067	±0,0023	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0067	±0,0023	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0015	±0,0005	0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0088	±0,0031	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,019	±0,007	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,052	±0,018	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,34		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00021		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00021		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022863 del 04/07/2022

Parametro	U.M.	Risultato		D.Las 152/06 - Terreni			
Metodo	O.IVI.	Risuitato	Incertezza	Colonna A	Colonna B		
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5		
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0012	±0,0004	0,01	0,5		
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1		
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1		
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1		
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2		
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,00000059		0,00001	0,0001		
OCDD EPA 1613B 1994	ng/kg	41	±17				
OCDF EPA 1613B 1994	ng/kg	3,7	±1,5				
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	5,1	±2,0				
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	3,9	±1,6				
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	0,28	±0,11				
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,17					
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	0,57	±0,23				
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,17					
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	0,43	±0,17				
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,17					
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,17					
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,17					
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	0,44	±0,18				
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,17					
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	0,60	±0,24				

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022863 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,035			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	0,36	±0,15		
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0020	±0,0007	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,21		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	4,9	±1,4	50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	40,46	±4,05		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	59,54	±5,95		

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022863 del 04/07/2022 File firmato digitalmente.

> Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022863

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022862 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S4 (0-1 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: \$4

Prelevato da: Personale ambiente s.p.a. - Mannocci / Raspolli

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 6/collesalvetti

Data Prelievo: 07/04/2022

Data Accettazione: 08/04/2022

Data Inizio Analisi: 08/04/2022 Data Fine Analisi: 27/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	ирН	9,2	±0,2		
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	14	±3		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	98	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	6,6	±1,3	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,36	±0,07	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,43	±0,09	2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	5,8	±1,2	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	22	±4	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,15	±0,05	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,084	±0,017	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	21	±4	120	500

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022862 del 04/07/2022

Parametro					
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	39	±8	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	17	±3	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	16	±3	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	92	±18	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0084	±0,0029	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0054	±0,0019	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0090	±0,0032	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0064	±0,0023	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0073	±0,0025	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,012	±0,004	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0011	±0,0004	0,1	10
Dibenzo (a,I) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0021	±0,0008	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0012	±0,0004	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00023		0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0025	±0,0009	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0068	±0,0026	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,016	±0,006	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,078		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00023		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00023		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022862 del 04/07/2022

Parametro					
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00073	±0,00022	0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0010	±0,0003	0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF 	mg I-TEQ/kg	0,000000032		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	13	±5		
OCDF EPA 1613B 1994	ng/kg	2,5	±1,0		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	1,6	±0,7		
1,2,3,4,7,8,9-HpCDF <i>EPA</i> 1613B 1994	ng/kg	< 0,18			
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,18			
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,18			
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,18			

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022862 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/0 Colonna A	06 - Terreni Colonna B
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,037			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	< 0,037			
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00023	±0,00008	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,21		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	< 1,9		50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	47,39	±4,74		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	52,61	±5,26		

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: **22LA0022862 del 04/07/2022** File firmato digitalmente.

Responsabile Chimico
Dott. Fallica Mauro Placido
N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI
FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022862

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022861 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S5 (1-4.4 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: S5

Prelevato da: Personale ambiente s.p.a. - Mannocci / Raspolli

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 4/collesalvetti

Data Prelievo: 07/04/2022

Data Accettazione: 08/04/2022

Data Inizio Analisi: 08/04/2022 Data Fine Analisi: 27/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	upH	9,4	±0,2		
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	12	±2		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	75	±4		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	2,1	±0,4	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,21	±0,04	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	< 0,046		2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	3,8	±0,8	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	19	±4	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,046	±0,014	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,037	±0,007	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	22	±5	120	500

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022861 del 04/07/2022

Parametro					
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	4,4	±0,9	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	8,2	±1,6	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	8,4	±1,7	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	20	±4	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,013	±0,004	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,014	±0,005	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,011	±0,004	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0088	±0,0031	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0070	±0,0024	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,016	±0,006	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0013	±0,0004	0,1	10
Dibenzo (a,l) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0018	±0,0006	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0019	±0,0007	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00011		0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0028	±0,0010	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0061	±0,0023	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,020	±0,007	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,10		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00011		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00011		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022861 del 04/07/2022

Parametro					
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/0 Colonna A	06 - Terreni Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00054	±0,00016	0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF 	mg I-TEQ/kg	0,00000033		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	12	±5		
OCDF EPA 1613B 1994	ng/kg	0,88	±0,35		
1,2,3,4,6,7,8-HpCDD <i>EPA</i> 1613B 1994	ng/kg	1,1	±0,4		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	0,36	±0,14		
1,2,3,4,7,8,9-HpCDF <i>EPA</i> 1613B 1994	ng/kg	< 0,091			
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,091			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,091			
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,091			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,091			
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,091			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,091			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,091			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,091			
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,091			
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,091			

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022861 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,018			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	0,056	±0,022		
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0010	±0,0004	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,21		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	2,8	±0,8	50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	21,57	±2,16		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	78,43	±7,84		

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022861 del 04/07/2022 File firmato digitalmente.

> Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022861

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022860 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S5 (0-1 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: S5

Prelevato da: Personale ambiente s.p.a. - Mannocci / Raspolli

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 3/collesalvetti

Data Prelievo: 07/04/2022

Data Accettazione: 08/04/2022

Data Inizio Analisi: 08/04/2022 Data Fine Analisi: 27/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/ Colonna A	06 - Terreni Colonna B
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	ирН	8,6	±0,2		
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	8,5	±1,7		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	96	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	5,4	±1,1	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,30	±0,06	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	< 0,12		2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	4,0	±0,8	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	22	±4	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,19	±0,06	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,090	±0,018	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	15	±3	120	500

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022860 del 04/07/2022

Parametro					
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	17	±4	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	17	±3	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	15	±3	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	27	±5	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,010	±0,004	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0055	±0,0019	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,011	±0,004	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,011	±0,004	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0084	±0,0029	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,016	±0,006	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0016	±0,0006	0,1	10
Dibenzo (a,I) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0028	±0,0010	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0018	±0,0006	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00028		0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0032	±0,0011	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0080	±0,0030	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,017	±0,006	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,095		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00028		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00028		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022860 del 04/07/2022

Parametro					
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00075	±0,00022	0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0011	±0,0003	0,01	0,1
Dieldrin <i>EPA</i> 3545A 2007 + <i>EPA</i> 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,000000061		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	16	±6		
OCDF EPA 1613B 1994	ng/kg	2,8	±1,1		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	1,7	±0,7		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	1,5	±0,6		
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	< 0,25			
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,25			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,25			
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,25			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,25			
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,25			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,25			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,25			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,25			
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,25			
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,25			

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022860 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/0 Colonna A	06 - Terreni Colonna B
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,050			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	0,10	±0,04		
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0011	±0,0004	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,15		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	< 2,3		50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	58,56	±5,86		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	41,44	±4,14		

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

Limiti:

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022860 del 04/07/2022 File firmato digitalmente.

> Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022860

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022661 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S6 (0-1 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: S6

Prelevato da: Personale ambiente s.p.a. - Mannocci Mattia

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 6/collesalvetti

Data Prelievo: 06/04/2022

Data Accettazione: 07/04/2022

Data Inizio Analisi: 07/04/2022 Data Fine Analisi: 27/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	upH	9,3	±0,2		
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	9,5	±1,9		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	93	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	4,5	±0,9	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,40	±0,08	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	< 0,092		2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	8,5	±1,7	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	19	±4	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,14	±0,04	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,058	±0,012	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	26	±5	120	500

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022661 del 04/07/2022

Parametro					
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	11	±2	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	20	±4	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	16	±3	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	46	±9	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0031	±0,0011	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0023	±0,0008	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0059	±0,0021	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0056	±0,0020	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0054	±0,0019	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0076	±0,0027	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00063	±0,00022	0,1	10
Dibenzo (a,I) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00093	±0,00032	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00094	±0,00033	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00023		0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0014	±0,0005	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0039	±0,0015	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0070	±0,0024	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,045		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00023		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00023		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022661 del 04/07/2022

Parametro					
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/0 Colonna A	06 - Terreni Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00051	±0,00015	0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,00000013		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	4,7	±1,9		
OCDF EPA 1613B 1994	ng/kg	0,52	±0,21		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	0,51	±0,20		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	0,31	±0,13		
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,18			
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,18			
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,18			

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022661 del 04/07/2022

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.Lqs 152/0 Colonna A	6 - Terreni Colonna B
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,036			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	< 0,036			
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00060	±0,00021	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,2		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	< 1,9		50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	44,42	±4,44		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	55,58	±5,56		

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022661 del 04/07/2022 File firmato digitalmente.

> Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022661

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022662 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S6 (1-2.7 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: S6

Prelevato da: Personale ambiente s.p.a. - Mannocci Mattia

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 7/collesalvetti

Data Prelievo: 06/04/2022

Data Accettazione: 07/04/2022

Data Inizio Analisi: 07/04/2022 Data Fine Analisi: 27/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	upH	8,6	±0,2		
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	6,7	±1,3		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	96	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	5,0	±1,0	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,55	±0,11	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	< 0,11		2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	11	±2	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	23	±5	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,15	±0,04	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	< 0,054		1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	32	±6	120	500

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022662 del 04/07/2022

Parametro		Dia H 1			
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	13	±3	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	34	±7	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	17	±3	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	50	±10	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00065	±0,00023	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0021	±0,0007	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0060	±0,0021	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0054	±0,0019	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0055	±0,0019	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0069	±0,0024	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00053	±0,00019	0,1	10
Dibenzo (a,l) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00045	±0,00016	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00081	±0,00028	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00025		0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00093	±0,00032	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0019	±0,0007	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0038	±0,0013	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,035		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00025		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00025		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0022662 del 04/07/2022

Parametro	11.54	Diaultata		D.1	C Tamani
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/0 Colonna A	6 - Terreni Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	< 0,0000010		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	< 0,41			
OCDF EPA 1613B 1994	ng/kg	< 0,41			
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	< 0,20			
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	< 0,20			
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	< 0,20			
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,20			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,20			
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,20			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,20			
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,20			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,20			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,20			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,20			
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,20			
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,20			

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022662 del 04/07/2022

< 0,041			
< 0,041			
< 0,00000	52	0,06	5
< 0,2		10	250
11	±3	50	750
Asse Assente	•		
< 1000		1000	1000
51,08	±5,11		
48,92	±4,89		
-	Asse Assente < 1000 51,08	Asse Assente < 1000 ±5,11	Asse Assente < 1000 1000 51,08 ±5,11

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022662 del 04/07/2022 File firmato digitalmente.

> Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022662

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0023175 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S7 (0-1 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: \$7

Prelevato da: Personale ambiente s.p.a. - Mannocci Mattia

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 1/collesalvetti

Data Prelievo: 11/04/2022

Data Accettazione: 12/04/2022

Data Inizio Analisi: 12/04/2022 Data Fine Analisi: 27/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	upH	7,9	±0,2		
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	4,6	±0,9		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	91	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	9,4	±1,9	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,45	±0,09	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	3,8	±0,8	2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	7,9	±1,6	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	43	±9	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,41	±0,12	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,19	±0,04	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	39	±8	120	500

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023175 del 04/07/2022

Colonna A	/06 - Terreni Colonna B
	1000
400	
120	600
90	250
150	1500
0,5	10
0,1	10
0,5	10
0,5	10
0,1	10
5	50
0,1	10
0,1	10
0,1	10
0,1	10
0,1	10
0,1	5
5	50
10	100
0,01	1
0,01	0,1
0,01	1
0,01	0,1
	150 0,5 0,1 0,5 0,1 5 0,1 0,1 0,

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023175 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/0 Colonna A	06 - Terreni Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00027		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00027		0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,011	±0,003	0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00027		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00027		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,0000027		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	110	±44		
OCDF EPA 1613B 1994	ng/kg	11	±4		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	15	±6		
1,2,3,4,6,7,8-HpCDF <i>EPA 1613B 1994</i>	ng/kg	11	±5		
1,2,3,4,7,8,9-HpCDF <i>EPA 1613B 1994</i>	ng/kg	0,87	±0,35		
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,23			
1,2,3,4,7,8-HxCDF <i>EPA</i> 1613B 1994	ng/kg	2,3	±0,9		
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	0,74	±0,30		
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	1,7	±0,7		
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	0,63	±0,25		
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	0,65	±0,26		
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	0,30	±0,12		
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	1,3	±0,5		
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	1,9	±0,8		
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	2,3	±0,9		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023175 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,045			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	2,0	±0,8		
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00069	±0,00024	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,19		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	7,0	±1,9	50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	54,04	±5,40		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	45,96	±4,60		

(*) - Prova non accreditata ACCREDIA

▶ Valore uguale o superiore al limite indicato per il parametro

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023175 del 04/07/2022 valori di riferimento

File firmato digitalmente.

Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0023175

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0023176 del 04/07/2022

Spett.

Ambiente s.p.a.

Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S7 (1-3.7 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: \$7

Prelevato da: Personale ambiente s.p.a. - Mannocci Mattia

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 2/collesalvetti

Data Prelievo: 11/04/2022

Data Accettazione: 12/04/2022

Data Inizio Analisi: 12/04/2022 Data Fine Analisi: 19/05/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/06 Colonna A	- Terreni Colonna B
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	ирН	8,7	±0,2		
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	17	±3		
Idrocarburi alifatici C5 - C8 MADEP VPH 2017	mg/kg	0,40	±0,12		
Idrocarburi alifatici C9 - C12 MADEP VPH 2017	mg/kg	2,6	±0,8		
Idrocarburi alifatici C13 - C18	mg/kg	560	±170		
MADEP EPH 2004					
Idrocarburi alifatici C19 - C36	mg/kg	1100	±330		
MADEP EPH 2004					
Idrocarburi aromatici C9 - C10 MADEP VPH 2017	mg/kg	< 0,5			
Idrocarburi aromatici C11 - C12 MADEP EPH 2004 + EPA 8270E 2018	mg/kg	< 0,05			
Idrocarburi aromatici C13 - C22 MADEP EPH 2004	mg/kg	1,2	±0,4		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	95	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	11	±2	20	50

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023176 del 04/07/2022

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.Las 152/ Colonna A	06 - Terreni Colonna B
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,78	±0,16	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,74	±0,15	2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	16	±3	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	66	±13	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,60	±0,18	2	15
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	89	±18	120	500
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	130	±25	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	59	±12	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	42	±8	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	310	±61	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,21	±0,07	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,21	±0,07	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,14	±0,05	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,13	±0,04	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,14	±0,05	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,32	±0,11	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,036	±0,013	0,1	10
Dibenzo (a,l) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,065	±0,023	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,080	±0,028	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,033	±0,011	0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,036	±0,013	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,14	±0,05	0,1	5

Via Frassina, 21 - Carrara (MS) - 54033

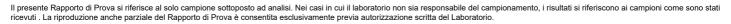
Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023176 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Las 152/06 - Terreni		
				Colonna A	Colonna B	
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,42	±0,15	5	50	
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 <i>EPA 3545A 2007 + EPA 8270E 2018</i>	mg/kg	2,0		10	100	
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00097		0,01	1	
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00097		0,01	0,1	
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00097		0,01	1	
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00097		0,01	0,1	
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00097		0,01	0,5	
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00097		0,01	0,5	
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1	
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0068	±0,0020	0,01	0,1	
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00097		0,01	0,1	
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00097		0,01	2	
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,0000095		0,00001	0,0001	
OCDD EPA 1613B 1994	ng/kg	390	±160			
OCDF EPA 1613B 1994	ng/kg	27	±11			
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	37	±15			
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	16	±7			
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	1,7	±0,7			
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	1,0	±0,4			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	9,8	±3,9			
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	2,4	±0,9			

Via Frassina, 21 - Carrara (MS) - 54033


Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023176 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Las 152/06 Colonna A	6 - Terreni Colonna B
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	3,3	±1,3		·
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	2,1	±0,8		
1,2,3,7,8,9-HxCDF <i>EPA</i> 1613B 1994	ng/kg	0,47	±0,19		
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	0,92	±0,37		
1,2,3,7,8-PeCDF <i>EPA</i> 1613B 1994	ng/kg	6,3	±2,5		
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	2,8	±1,1		
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	9,4	±3,8		
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	0,085	±0,034		
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	7,8	±3,1		
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0012		0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	2,9	±0,7	10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	1800	±510	50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Presente			
* Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	95,47	±9,55		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	4,53	±0,45		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023176 del 04/07/2022

22LA0023176/01 eluato UNI 10802:2013 DM 05/02/1998

Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
Residuo secco a 105°C UNI EN 14346:2007	%p/p	85	±4		
Conducibilità UNI EN 12457-2:2004 + UNI EN 27888:1995	μS/cm	309			
Nitrati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0,72	±0,08	50	
Fluoruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0,83	±0,09	1,5	
Solfati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	40	±4	250	
Cloruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0,68	±0,08	100	
Cianuri UNI EN 12457-2:2004 + APAT CNR IRSA 4070 Man 29 2003	μg/l	< 10		50	
Bario UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	0,14	±0,03	1	
Rame UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0,0050		0,05	
Zinco UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0,020		3	
Berillio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,40		10	
Cobalto UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 5,0		250	
Nichel UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	6,1	±1,2	10	
Vanadio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 5,0		250	
Arsenico UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 1,0		50	
Cadmio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,50		5	
Cromo totale UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	13	±3	50	
Piombo UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 1,0		50	
Selenio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 1,0		10	
Mercurio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,10		1	
Amianto (ricerca quantitativa) DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI EN 1245	mg/l 7-2:2004 + DM	< 10	288 10/12/1994 All 2	30	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023176 del 04/07/2022

22LA0023176/01 eluato UNI 10802:2013 DM 05/02/1998

-	Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
	Richiesta chimica di ossigeno (COD) UNI EN 12457-2:2004 + ISO 15705:2002	mg/l	9,4	±2,4	30	
*	pH DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI EN 12	upH 457-2:2004 + AF	7,54 PAT CNR IRSA 2060	Man 29 2003	5,5÷12	

22LA0023176/02 DL1 - First dilution sample

Parametro Metodo	U.M.		Risultato	Incertezza	D.Lgs 152/0 Colonna A	06 - Terreni Colonna B	
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	•	42	±8	1	5	

(*) - Prova non accreditata ACCREDIA

▶ Valore uguale o superiore al limite indicato per il parametro

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al relativo RL.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

Limiti:

Allegato 3 al Decreto Ministeriale del 05/02/1998 Individuazione dei rifiuti non pericolosi sottoposti alle procedure semplificate di recupero ai sensi degli articoli 31 e 33 del decreto legislativo 5 febbraio 1997, n. 22 Concentrazioni limite.

Terreni ad uso Verde pubblico, privato e residenziale, commerciale e industriale Dlgs152:2006: D.Lgs 152/06 - Terreni:

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

I AR Nº 05101

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023176 del 04/07/2022

Note: La presenza di amianto è relativa a minime tracce di fibrille asbestiformi disperse nella matrice terrosa, qualificate (in MOPOL, MOCF e con l'ausilio di liquidi di Cargille) come fibre di Amosite.

File firmato digitalmente da:

Responsabile Chimico
Dott. Fallica Mauro Placido
N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E
DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0023176

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022657 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S8 (0-1 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: \$8

Prelevato da: Personale ambiente s.p.a. - Mannocci Mattia

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 1/collesalvetti

Data Prelievo: 06/04/2022

Data Accettazione: 07/04/2022

Data Inizio Analisi: 07/04/2022 Data Fine Analisi: 27/04/2022

arametro letodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	upH	8,6	±0,2		
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	12	±2		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	92	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	5,3	±1,1	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,31	±0,06	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	< 0,093		2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	5,3	±1,1	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	22	±4	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,25	±0,08	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,063	±0,013	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	23	±5	120	500

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022657 del 04/07/2022

Parametro	U.M. Risultato					
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/06 - Terreni Colonna A Colonna B		
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	13	±3	100	1000	
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	13	±3	120	600	
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	14	±3	90	250	
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	33	±7	150	1500	
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,041	±0,014	0,5	10	
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,052	±0,018	0,1	10	
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,043	±0,015	0,5	10	
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,047	±0,017	0,5	10	
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,060	±0,021	0,1	10	
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,059	±0,021	5	50	
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0053	±0,0018	0,1	10	
Dibenzo (a,l) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0096	±0,0034	0,1	10	
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0070	±0,0025	0,1	10	
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0011		0,1	10	
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,012	±0,004	0,1	10	
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,047	±0,018	0,1	5	
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,087	±0,031	5	50	
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,47		10	100	
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0011		0,01	1	
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1	
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0011		0,01	1	
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022657 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/0 Colonna A	6 - Terreni Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,000000027		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	9,9	±4,0		
OCDF EPA 1613B 1994	ng/kg	0,97	±0,39		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	0,87	±0,35		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	0,74	±0,30		
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,18			
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,18			
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,18			

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022657 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/0 Colonna A	06 - Terreni Colonna B
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,037			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	< 0,037			
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00037	±0,00013	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,2		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	< 1,8		50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	44,10	±4,41		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	55,90	±5,59		

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022657 del 04/07/2022 File firmato digitalmente.

> Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022657

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022658 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S8 (1-3.6 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: \$8

Prelevato da: Personale ambiente s.p.a. - Mannocci Mattia

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 2/collesalvetti

Data Prelievo: 06/04/2022

Data Accettazione: 07/04/2022

Data Inizio Analisi: 07/04/2022 Data Fine Analisi: 27/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152 Colonna A	/06 - Terreni Colonna B	
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	upH	9,1	±0,2			
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	14	±3			
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	97	±5			
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	4,6	±0,9	20	50	
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,29	±0,06	2	10	
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,084	±0,017	2	15	
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	6,4	±1,3	20	250	
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	55	±11	150	800	
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,26	±0,08	2	15	
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,061	±0,012	1	5	
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	49	±10	120	500	

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022658 del 04/07/2022

Parametro	II M Risultato				
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	16	±3	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	14	±3	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	14	±3	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	56	±11	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,17	±0,06	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,16	±0,06	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,11	±0,04	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,11	±0,04	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,077	±0,027	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,26	±0,09	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0098	±0,0034	0,1	10
Dibenzo (a,I) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,020	±0,007	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,020	±0,007	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00086		0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,024	±0,008	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,064	±0,024	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,29	±0,10	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	1,3		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00086		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00086		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022658 del 04/07/2022

Parametro				D 450/00 T		
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/0 Colonna A	06 - Terreni Colonna B	
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5	
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0082	±0,0025	0,01	0,5	
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1	
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0011	±0,0003	0,01	0,1	
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1	
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2	
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,0000002		0,00001	0,0001	
OCDD EPA 1613B 1994	ng/kg	49	±19			
OCDF EPA 1613B 1994	ng/kg	4,4	±1,8			
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	4,7	±1,9			
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	2,8	±1,1			
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	0,20	±0,08			
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,13				
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	0,37	±0,15			
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,13				
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	0,32	±0,13			
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,13				
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,13				
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,13				
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,13				
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,13				
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,13				

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022658 del 04/07/2022

< 0,026			
< 0,026			
0,0035	±0,0012	0,06	5
< 0,15		10	250
7,3	±2,0	50	750
Assente			
< 1000		1000	1000
34,76	±3,48		
65,24	±6,52		
	Assente < 1000 34,76	Assente < 1000 ±3,48	Assente

(*) - Prova non accreditata ACCREDIA

▶ Valore uguale o superiore al limite indicato per il parametro

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022658 del 04/07/2022 valori di riferimento

File firmato digitalmente.

Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022658

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022659 del 04/07/2022

Spett. **Ambiente s.p.a.** Via Frassina, 21 54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S9 (0-1 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: S9

Prelevato da: Personale ambiente s.p.a. - Mannocci Mattia

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 4/collesalvetti

Data Prelievo: 06/04/2022

Data Accettazione: 07/04/2022

Data Inizio Analisi: 07/04/2022 Data Fine Analisi: 27/04/2022

Parametro <i>Metod</i> o	U.M.	Risultato	Incertezza	D.Lgs 152 Colonna A	06 - Terreni Colonna B	
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	ирН	9,5	±0,2			
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	17	±3			
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	98	±5			
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	11	±2	20	50	
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,53	±0,11	2	10	
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,25	±0,05	2	15	
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	8,2	±1,6	20	250	
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	37	±7	150	800	
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,48	±0,14	2	15	
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,45	±0,09	1	5	
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	37	±7	120	500	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0022659 del 04/07/2022

Parametro	U.M.	Risultato	lunauta	D.Las 152/	06 - Terreni
Metodo		Taballato	Incertezza	Colonna A	Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	89	±18	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	54	±11	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	25	±5	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	120	±25	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,021	±0,008	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,035	±0,012	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,035	±0,012	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,029	±0,010	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,020	±0,007	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,044	±0,016	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0020	±0,0007	0,1	10
Dibenzo (a,l) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0040	±0,0014	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0030	±0,0011	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00028		0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0068	±0,0024	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,015	±0,006	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,044	±0,015	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,26		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00028		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00028		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1

Via Frassina, 21 - Carrara (MS) - 54033

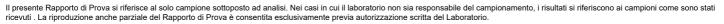
Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022659 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Las 152/	06 - Terreni Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0035	±0,0010	0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,0000015		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	110	±44		
OCDF EPA 1613B 1994	ng/kg	9,2	±3,7		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	14	±6		
1,2,3,4,6,7,8-HpCDF <i>EPA 1613B 1994</i>	ng/kg	9,9	±4,0		
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	0,75	±0,30		
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	0,37	±0,15		
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	1,4	±0,6		
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	0,62	±0,25		
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	0,85	±0,34		
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	0,45	±0,18		
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	0,47	±0,19		
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,24			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	0,59	±0,24		
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	1,4	±0,6		
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	0,99	±0,40		

Via Frassina, 21 - Carrara (MS) - 54033


Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022659 del 04/07/2022

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.Las 152/ Colonna A	06 - Terreni Colonna B
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,048			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	0,85	±0,34		
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,000071		0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,17		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	8,3	±2,3	50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	60,10	±6,01		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	39,90	±3,99		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022659 del 04/07/2022

22LA0022659/01 eluato UNI 10802:2013 DM 05/02/1998

Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
Residuo secco a 105°C UNI EN 14346:2007	%p/p	87	±4		
Conducibilità UNI EN 12457-2:2004 + UNI EN 27888:1995	μS/cm	101			
Nitrati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0,66	±0,07	50	
Fluoruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0,65	±0,07	1,5	
Solfati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	6,3	±0,7	250	
Cloruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0,61	±0,07	100	
Cianuri UNI EN 12457-2:2004 + APAT CNR IRSA 4070 Man 29 2003	μg/l	< 10		50	
Bario UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	0,093	±0,019	1	
Rame UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	0,014	±0,003	0,05	
Zinco UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	0,031	±0,006	3	
Berillio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,40		10	
Cobalto UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 5,0		250	
Nichel UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	9,9	±2,0	10	
Vanadio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	18	±4	250	
Arsenico UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	5,1	±1,0	50	
Cadmio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,50		5	
Cromo totale UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	18	±4	50	
Piombo UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	13	±3	50	
Selenio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 1,0		10	
Mercurio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,10		1	
Amianto (ricerca quantitativa) DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI EN 1245	mg/l	< 10	088 10/12/1004 4# 0	30	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022659 del 04/07/2022

22LA0022659/01 eluato UNI 10802:2013 DM 05/02/1998

Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
Richiesta chimica di ossigeno (COD) UNI EN 12457-2:2004 + ISO 15705:2002	mg/l	8,5	±2,1	30	
* pH * DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI EN	upH 12457-2:2004 + AF	8,14 PAT CNR IRSA 2060	Man 29 2003	5,5÷12	

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al relativo RL.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

Allegato 3 al Decreto Ministeriale del 05/02/1998 Individuazione dei rifiuti non pericolosi sottoposti alle procedure semplificate di recupero ai sensi degli articoli 31 e 33 del decreto legislativo 5 febbraio 1997, n. 22 Concentrazioni limite.

Terreni ad uso Verde pubblico, privato e residenziale, commerciale e industriale Dlgs152:2006: D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

File firmato digitalmente da:

Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022659

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

I AR Nº 05101

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022660 del 04/07/2022

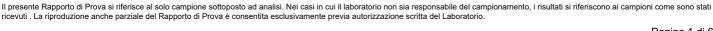
Spett. **Ambiente s.p.a.** Via Frassina, 21 54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S9 (1-3.2 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: S9

Prelevato da: Personale ambiente s.p.a. - Mannocci Mattia


Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 5/collesalvetti

Data Prelievo: **06/04/2022**Data Accettazione: **07/04/2022**

Data Inizio Analisi: 07/04/2022 Data Fine Analisi: 27/04/2022

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.Lgs 152 Colonna A	06 - Terreni Colonna B
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	upH	9,1	±0,2		
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	11	±2		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	91	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	11	±2	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,45	±0,09	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	< 0,098		2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	6,4	±1,3	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	29	±6	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,40	±0,12	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,10	±0,02	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	26	±5	120	500

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022660 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Las 152/	06 - Terreni Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	19	±4	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	18	±4	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	22	±4	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	38	±8	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,014	±0,005	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,033	±0,012	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,018	±0,006	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,018	±0,006	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,029	±0,010	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,028	±0,010	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0042	±0,0015	0,1	10
Dibenzo (a,l) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0067	±0,0024	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0084	±0,0030	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0023		0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0065	±0,0023	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,018	±0,007	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,028	±0,010	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,21		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0023		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0023		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022660 del 04/07/2022

Parametro	U.M.	Risultato		D.Las 152/0	3 - Terreni
Metodo	O.1VI.	เงเอนเเสเบ	Incertezza	Colonna A	Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0028	±0,0008	0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,00000016		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	16	±6		
OCDF EPA 1613B 1994	ng/kg	1,3	±0,5		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	1,8	±0,7		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	1,4	±0,6		
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	< 0,19			
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,19			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,19			
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,19			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,19			
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,19			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,19			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,19			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,19			
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,19			
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	0,20	±0,08		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022660 del 04/07/2022

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.Las 152/ Colonna A	06 - Terreni Colonna B
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,037			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	0,16	±0,06		
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0081	±0,0028	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,14		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	14	±4	50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	46,97	±4,70		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	53,03	±5,30		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022660 del 04/07/2022

22LA0022660/01 eluato UNI 10802:2013 DM 05/02/1998

Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
Residuo secco a 105°C UNI EN 14346:2007	%p/p	86	±4		
Conducibilità UNI EN 12457-2:2004 + UNI EN 27888:1995	μS/cm	224			
Nitrati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0,28	±0,03	50	
Fluoruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	1,2	±0,1	1,5	
Solfati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	16	±2	250	
Cloruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	4,8	±0,5	100	
Cianuri UNI EN 12457-2:2004 + APAT CNR IRSA 4070 Man 29 2003	μg/l	< 10		50	
Bario UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0,050		1	
Rame UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0,0050		0,05	
Zinco UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0,020		3	
Berillio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,40		10	
Cobalto UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 5,0		250	
Nichel UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 2,0		10	
Vanadio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 5,0		250	
Arsenico UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 1,0		50	
Cadmio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,50		5	
Cromo totale UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 5,0		50	
Piombo UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 1,0		50	
Selenio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 1,0		10	
Mercurio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,10		1	
Amianto (ricerca quantitativa) DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI EN 1245	mg/l	< 10		₄ 30	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022660 del 04/07/2022

22LA0022660/01 eluato UNI 10802:2013 DM 05/02/1998

Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
Richiesta chimica di ossigeno (COD) UNI EN 12457-2:2004 + ISO 15705:2002	mg/l	8,4	±2,1	30	
* pH * DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI EN	upH 12457-2:2004 + AF	7,61 PAT CNR IRSA 2060	Man 29 2003	5,5÷12	

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al relativo RL.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

Limiti

Allegato 3 al Decreto Ministeriale del 05/02/1998 Individuazione dei rifiuti non pericolosi sottoposti alle procedure semplificate di recupero ai sensi degli articoli 31 e 33 del decreto legislativo 5 febbraio 1997, n. 22 Concentrazioni limite.

Terreni ad uso Verde pubblico, privato e residenziale, commerciale e industriale Dlgs152:2006: D.Lgs 152/06 - Terreni: Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

File firmato digitalmente da:

Responsabile Chimico
Dott. Fallica Mauro Placido
N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E
DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022660

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022655 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S10 0-1

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: \$10

Prelevato da: Personale ambiente s.p.a. - Raspolli Marco

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 5/collesalvetti

Data Prelievo: **05/04/2022**Data Accettazione: **07/04/2022**

Data Inizio Analisi: 07/04/2022 Data Fine Analisi: 27/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	upH	9,2	±0,2		
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	14	±3		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	95	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	10	±2	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,39	±0,08	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	< 0,11		2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	8,5	±1,7	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	42	±8	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,23	±0,07	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,085	±0,017	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	56	±11	120	500

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022655 del 04/07/2022

Parametro					
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	14	±3	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	15	±3	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	20	±4	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	34	±7	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0045	±0,0016	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0035	±0,0012	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0038	±0,0013	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0059	±0,0021	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0048	±0,0017	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0091	±0,0032	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0013		0,1	10
Dibenzo (a,l) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0017	±0,0006	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0013		0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0013		0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0019	±0,0007	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0051	±0,0019	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0089	±0,0031	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,049		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0013		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0013		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
E. 7. 3040A 2007 - E. 7. 0270E 2070					

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022655 del 04/07/2022

Parametro	11.84	Diaultata		D.1450'6	.c. Tamani
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/0 Colonna A	6 - Terreni Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,00000034		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	21	±8		
OCDF EPA 1613B 1994	ng/kg	5,8	±2,3		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	1,8	±0,7		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	2,5	±1,0		
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	< 0,21			
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,21			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	0,36	±0,14		
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,21			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	0,24	±0,10		
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,21			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,21			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,21			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,21			
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	0,35	±0,14		
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	0,30	±0,12		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022655 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/0 Colonna A	6 - Terreni Colonna B
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,042			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	0,19	±0,08		
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00039	±0,00014	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,17		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	< 2,1		50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	51,64	±5,16		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	48,36	±4,84		

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022655 del 04/07/2022 File firmato digitalmente.

> Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022655

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022656 del 04/07/2022

Spett.

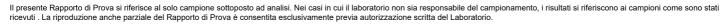
Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S10 1-3.7

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: \$10

Prelevato da: Personale ambiente s.p.a. - Raspolli Marco


Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 6/collesalvetti

Data Prelievo: **05/04/2022**Data Accettazione: **07/04/2022**

Data Inizio Analisi: 07/04/2022 Data Fine Analisi: 27/04/2022

Parametro <i>Metod</i> o	U.M.		Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B	
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	upH		8,9	±0,2			
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg		13	±3			
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p		81	±4			
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	•	25	±5	20	50	
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg		0,46	±0,09	2	10	
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	•	2,3	±0,5	2	15	
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg		9,4	±1,9	20	250	
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg		41	±8	150	800	
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg		0,37	±0,11	2	15	
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg		0,095	±0,019	1	5	
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg		55	±11	120	500	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022656 del 04/07/2022

Parametro				<u> </u>	
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	49	±10	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	20	±4	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	24	±5	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	94	±19	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,43	±0,15	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,46	±0,16	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,29	±0,10	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,28	±0,10	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,23	±0,08	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,50	±0,18	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,028	±0,010	0,1	10
Dibenzo (a,l) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,057	±0,020	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,062	±0,022	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0023		0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,077	±0,027	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,19	±0,07	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	1,0	±0,4	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	3,6		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0023		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0023		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022656 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/06 Colonna A	- Terreni Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0057	±0,0017	0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,00000096		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	40	±16		
OCDF EPA 1613B 1994	ng/kg	6,0	±2,4		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	4,6	±1,8		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	5,9	±2,4		
1,2,3,4,7,8,9-HpCDF <i>EPA 1613B 1</i> 994	ng/kg	0,54	±0,21		
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,17			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	1,3	±0,5		
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,17			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	0,89	±0,36		
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,17			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,17			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,17			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	1,1	±0,4		
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	0,93	±0,37		
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	0,68	±0,27		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022656 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/ Colonna A	06 - Terreni Colonna B	
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,035				
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	0,97	±0,39			
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0020	±0,0007	0,06	5	
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,16		10	250	
Idrocarburi C>12 ISO 16703:2004	mg/kg	5,2	±1,5	50	750	
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente				
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000	
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	45,31	±4,53			
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	54,69	±5,47			

(*) - Prova non accreditata ACCREDIA

▶ Valore uguale o superiore al limite indicato per il parametro

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n° : **22LA0022656 del 04/07/2022** valori di riferimento

File firmato digitalmente.

Responsabile Chimico
Dott. Fallica Mauro Placido
N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI
FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022656

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0023177 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

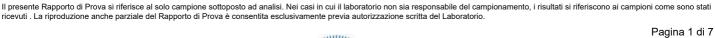
Denominazione del Campione: Campione di terreno - S11 (0-1 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: S11

Prelevato da: Personale ambiente s.p.a. - Mannocci Mattia

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)


Verbale di prelievo n°: 3/collesalvetti

Data Prelievo: 11/04/2022

Data Accettazione: 12/04/2022

Data Inizio Analisi: 12/04/2022 Data Fine Analisi: 04/05/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152 Colonna A	/06 - Terreni Colonna B	
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	ирН	8,9	±0,2			
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	12	±2			
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	92	±5			
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	10	±2	20	50	
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,51	±0,10	2	10	
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,24	±0,05	2	15	
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	10	±2	20	250	
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	38	±8	150	800	
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,40	±0,12	2	15	
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	1,6	±0,3	1	5	
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	49	±10	120	500	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0023177 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Las 152/	06 - Terreni Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	84	±17	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	48	±10	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	22	±4	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	130	±26	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,20	±0,07	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,36	±0,12	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,21	±0,07	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,18	±0,06	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,26	±0,09	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,22	±0,08	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,044	±0,015	0,1	10
Dibenzo (a,l) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,073	±0,026	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,10	±0,04	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,023	±0,008	0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,056	±0,020	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,23	±0,09	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,42	±0,15	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	2,4		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00050		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00050		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00050		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00050		0,01	0,1

Via Frassina, 21 - Carrara (MS) - 54033

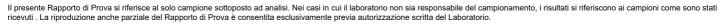
Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023177 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Las 152/	06 - Terreni Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00050		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00050		0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,022	±0,007	0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00050		0,01	0,1
Endrin <i>EPA</i> 3545A 2007 + <i>EPA</i> 8270E 2018	mg/kg	< 0,00050		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,0000075		0,00001	0,0001
OCDF EPA 1613B 1994	ng/kg	33	±13		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	160	±64		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	15	±6		
1,2,3,4,7,8,9-HpCDF <i>EPA 1613B 1994</i>	ng/kg	1,1	±0,4		
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	0,40	±0,16		
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	1,8	±0,7		
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	3,2	±1,3		
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	1,8	±0,7		
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	1,1	±0,5		
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	0,57	±0,23		
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	0,43	±0,17		
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	1,0	±0,4		
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	2,2	±0,9		
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	1,8	±0,7		
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	0,062	±0,025		

Via Frassina, 21 - Carrara (MS) - 54033


Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023177 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Las 152/ Colonna A	06 - Terreni Colonna B
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	1,1	±0,4		
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,030	±0,010	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,2		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	39	±11	50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	49,22	±4,92		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	50,78	±5,08		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0023177 del 04/07/2022

22LA0023177/01 eluato UNI 10802:2013 DM 05/02/1998

Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
Residuo secco a 105°C UNI EN 14346:2007	%p/p	87	±4		
Conducibilità UNI EN 12457-2:2004 + UNI EN 27888:1995	μS/cm	629			
Nitrati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0,11	±0,01	50	
Fluoruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0,51	±0,06	1,5	
Cloruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	14	±2	100	
Cianuri UNI EN 12457-2:2004 + APAT CNR IRSA 4070 Man 29 2003	μg/l	< 10		50	
Bario UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	0,12	±0,02	1	
Rame UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0,0050		0,05	
Zinco UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0,020		3	
Berillio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,40		10	
Cobalto UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 5,0		250	
Nichel UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	10	±2	10	
Vanadio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 5,0		250	
Arsenico UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	2,1	±0,4	50	
Cadmio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,50		5	
Cromo totale UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	µg/I	12	±2	50	
Piombo UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	1,1	±0,2	50	
Selenio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 1,0		10	
Mercurio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	µg/I	< 0,10		1	
Amianto (ricerca quantitativa) DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI EN 1245	mg/l 7-2:2004 + DM	< 10 06/09/1994 GU n° 2	288 10/12/1994 All 2	A 30	
Richiesta chimica di ossigeno (COD) UNI EN 12457-2:2004 + ISO 15705:2002	mg/l	26	±7	30	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023177 del 04/07/2022

22LA0023177/01 eluato UNI 10802:2013 DM 05/02/1998

 Parametro Metodo
 U.M.
 Risultato
 Incertezza
 D.M. 05/02/1998 Allegato 3

 pH Uph 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI EN 12457-2:2004 + APAT CNR IRSA 2060 Man 29 2003
 5,5÷12

22LA0023177/02 RE1 - First re-analysis/re-extraction sample

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 - Terreni Colonna A Colonna B	
OCDD EPA 1613B 1994	ng/kg	3300	±1300		

22LA0023177/03 DL1 - First dilution sample - eluato UNI 10802:2013 DM 05/02/1998

Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
Solfati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	130	±14	250	

(*) - Prova non accreditata ACCREDIA

▶ Valore uguale o superiore al limite indicato per il parametro

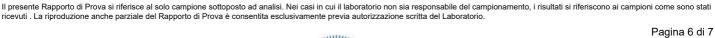
Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al relativo RL.


Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

Limiti:

Allegato 3 al Decreto Ministeriale del 05/02/1998 Individuazione dei rifiuti non pericolosi sottoposti alle procedure semplificate di recupero ai sensi

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023177 del 04/07/2022

degli articoli 31 e 33 del decreto legislativo 5 febbraio 1997, n. 22 Concentrazioni limite.

Terreni ad uso Verde pubblico, privato e residenziale, commerciale e industriale Dlgs152:2006: D.Lgs 152/06 - Terreni: Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)
Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

File firmato digitalmente da:

Responsabile Chimico
Dott. Fallica Mauro Placido
N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E
DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0023177

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0023178 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S11 (1-4 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: S11

Prelevato da: Personale ambiente s.p.a. - Mannocci Mattia

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 4/collesalvetti

Data Prelievo: 11/04/2022

Data Accettazione: 12/04/2022

Data Inizio Analisi: 12/04/2022 Data Fine Analisi: 27/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152 Colonna A	06 - Terreni Colonna B
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	upH	9,4	±0,2		
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	14	±3		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	93	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	29	±6	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,97	±0,19	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,33	±0,07	2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	18	±4	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	88	±18	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,46	±0,14	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,58	±0,12	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	100	±21	120	500

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023178 del 04/07/2022

Parametro					1
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	96	±19	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	54	±11	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	48	±10	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	140	±28	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,23	±0,08	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,39	±0,14	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,21	±0,07	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,20	±0,07	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,27	±0,09	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,28	±0,10	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,049	±0,017	0,1	10
Dibenzo (a,l) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,075	±0,026	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,13	±0,04	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,043	±0,015	0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,076	±0,026	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,24	±0,09	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,53	±0,19	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	2,7		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00100		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00100		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00100		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00100		0,01	0,1

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023178 del 04/07/2022

Parametro					
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00100		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00100		0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,029	±0,009	0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0013	±0,0004	0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00100		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF 	mg I-TEQ/kg	0,00000097		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	88	±35		
OCDF EPA 1613B 1994	ng/kg	43	±17		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	5,4	±2,2		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	8,6	±3,4		
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	2,0	±0,8		
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,43			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	1,0	±0,4		
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,43			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	0,99	±0,40		
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,43			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,43			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,43			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	0,59	±0,24		
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	1,1	±0,4		
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	0,55	±0,22		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023178 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/ Colonna A	06 - Terreni Colonna B
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,086			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	0,64	±0,26		
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,19	±0,07	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,18		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	52	±15	50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	> 99,90			
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	< 0,10			

(*) - Prova non accreditata ACCREDIA

▶ Valore uguale o superiore al limite indicato per il parametro

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023178 del 04/07/2022 valori di riferimento

File firmato digitalmente.

Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0023178

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0023179 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S12 (0-1 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: \$12

Prelevato da: Personale ambiente s.p.a. - Mannocci Mattia

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 5/collesalvetti

Data Prelievo: 11/04/2022

Data Accettazione: 12/04/2022

Data Inizio Analisi: 12/04/2022 Data Fine Analisi: 27/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/ Colonna A	06 - Terreni Colonna B
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	upH	9,0	±0,2		
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	9,4	±1,9		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	92	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	4,1	±0,8	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,41	±0,08	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,34	±0,07	2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	7,9	±1,6	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	27	±5	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,18	±0,05	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,28	±0,06	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	32	±7	120	500

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023179 del 04/07/2022

Parametro					
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	39	±8	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	25	±5	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	17	±4	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	99	±20	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,017	±0,006	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,020	±0,007	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,020	±0,007	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,019	±0,007	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,023	±0,008	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,029	±0,010	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0044	±0,0016	0,1	10
Dibenzo (a,I) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0068	±0,0024	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0049	±0,0017	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0011		0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0077	±0,0027	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,021	±0,008	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,035	±0,012	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,21		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00021		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00021		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00021		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00021		0,01	0,1

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023179 del 04/07/2022

Parametro					
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/0 Colonna A	06 - Terreni Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00021		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00021		0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00060	±0,00018	0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00021		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00021		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,00000015		0,00001	0,0001
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	1,6	±0,7		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	1,3	±0,5		
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	< 0,17			
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,17			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,17			
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,17			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,17			
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,17			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,17			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,17			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,17			
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,17			
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	0,20	±0,08		
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,034			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	0,11	±0,04		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023179 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/ Colonna A	06 - Terreni Colonna B
OCDD EPA 1613B 1994	ng/kg	13	±5		
OCDF EPA 1613B 1994	ng/kg	2,1	±0,8		
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00	±0,00	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,17		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	9,6	±2,7	50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	42,99	±4,30		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	57,01	±5,70		

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023179 del 04/07/2022 File firmato digitalmente.

> Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0023179

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0023180 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

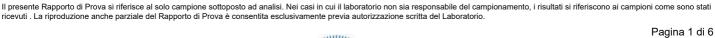
Denominazione del Campione: Campione di terreno - S12 (1-3.5 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: \$12

Prelevato da: Personale ambiente s.p.a. - Mannocci Mattia

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)


Verbale di prelievo n°: 6/collesalvetti

Data Prelievo: 11/04/2022

Data Accettazione: 12/04/2022

Data Inizio Analisi: 12/04/2022 Data Fine Analisi: 04/05/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	upH	9,4	±0,2		
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	6,1	±1,2		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	91	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	6,0	±1,2	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,62	±0,12	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,42	±0,08	2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	9,1	±1,8	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	30	±6	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,25	±0,08	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,26	±0,05	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	39	±8	120	500

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023180 del 04/07/2022

Parametro					
Metodo	U.M.	Risultato	Incertezza	D.Las 152/ Colonna A	06 - Terreni Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	73	±15	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	510	±100	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	19	±4	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	340	±68	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,31	±0,11	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,40	±0,14	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,25	±0,09	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,23	±0,08	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,21	±0,08	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,34	±0,12	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,046	±0,016	0,1	10
Dibenzo (a,l) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,088	±0,031	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,11	±0,04	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,044	±0,015	0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,087	±0,030	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,22	±0,08	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,52	±0,18	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	2,9		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00053		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00053		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00053		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00053		0,01	0,1

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023180 del 04/07/2022

Parametro	U.M.	Risultato	la a sad	D.Las 152/	06 - Terreni
Metodo	O.IVI.	Misuitato	Incertezza	Colonna A	Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00053		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00053		0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,095	±0,028	0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00053		0,01	0,1
Endrin <i>EPA 3545A 2007 + EPA 8270E 2018</i>	mg/kg	< 0,00053		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,0000018		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	84	±34		
OCDF EPA 1613B 1994	ng/kg	15	±6		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	12	±5		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	11	±4		
1,2,3,4,7,8,9-HpCDF <i>EPA</i> 1613B 1994	ng/kg	0,90	±0,36		
1,2,3,4,7,8-HxCDD <i>EPA</i> 1613B 1994	ng/kg	< 0,23			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	1,8	±0,7		
1,2,3,6,7,8-HxCDD <i>EPA</i> 1613B 1994	ng/kg	0,81	±0,32		
1,2,3,6,7,8-HxCDF <i>EPA</i> 1613B 1994	ng/kg	1,3	±0,5		
1,2,3,7,8,9-HxCDD <i>EPA</i> 1613B 1994	ng/kg	0,39	±0,16		
1,2,3,7,8,9-HxCDF <i>EPA</i> 1613B 1994	ng/kg	< 0,23			
1,2,3,7,8-PeCDD <i>EPA</i> 1613B 1994	ng/kg	< 0,23			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	0,96	±0,38		
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	1,4	±0,6		
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	1,4	±0,6		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023180 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Las 152/ Colonna A	06 - Terreni Colonna B
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,045			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	1,3	±0,5		
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,052	±0,018	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,22		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	27	±8	50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	52,42	±5,24		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	47,58	±4,76		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0023180 del 04/07/2022

22LA0023180/01 eluato UNI 10802:2013 DM 05/02/1998

Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
Residuo secco a 105°C UNI EN 14346:2007	%p/p	86	±4		
Conducibilità UNI EN 12457-2:2004 + UNI EN 27888:1995	μS/cm	426			
Nitrati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	< 0,1		50	
Fluoruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0,77	±0,09	1,5	
Solfati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	52	±6	250	
Cloruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	12	±1	100	
Cianuri UNI EN 12457-2:2004 + APAT CNR IRSA 4070 Man 29 2003	μg/l	< 10		50	
Bario UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	0,17	±0,03	1	
Rame UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	0,56	±0,11	0,05	
Zinco UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	0,27	±0,05	3	
Berillio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	1,1	±0,2	10	
Cobalto UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 5,0		250	
Nichel UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	27	±5	10	
Vanadio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	77	±15	250	
Arsenico UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	20	±4	50	
Cadmio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,50		5	
Cromo totale UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	52	±10	50	
Piombo UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	67	±13	50	
Selenio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	2,8	±0,6	10	
Mercurio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	0,28	±0,06	1	
Amianto (ricerca quantitativa) DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI EN 1245	mg/l	< 10		₄ 30	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0023180 del 04/07/2022

22LA0023180/01 eluato UNI 10802:2013 DM 05/02/1998

-	arametro Metodo	U.M.		Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
	Richiesta chimica di ossigeno (COD) UNI EN 12457-2:2004 + ISO 15705:2002	mg/l	٠	37	±9	30	
*	pH DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI EN 124	upH 157-2:2004 +	- APA	8,87 F CNR IRSA 2060	Man 29 2003	5,5÷12	

(*) - Prova non accreditata ACCREDIA

▶ Valore uguale o superiore al limite indicato per il parametro

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al relativo RL.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

l imiti

Allegato 3 al Decreto Ministeriale del 05/02/1998 Individuazione dei rifiuti non pericolosi sottoposti alle procedure semplificate di recupero ai sensi degli articoli 31 e 33 del decreto legislativo 5 febbraio 1997, n. 22 Concentrazioni limite.

Terreni ad uso Verde pubblico, privato e residenziale, commerciale e industriale Dlgs152:2006: D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

File firmato digitalmente da:

Responsabile Chimico
Dott. Fallica Mauro Placido
N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E
DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0023180

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022653 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S13 0-1

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: S13

Prelevato da: Personale ambiente s.p.a. - Raspolli Marco

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 3/collesalvetti

Data Prelievo: **05/04/2022**Data Accettazione: **07/04/2022**

Data Inizio Analisi: 07/04/2022 Data Fine Analisi: 27/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	upH	9,2	±0,2		
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	16	±3		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	92	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	16	±3	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,43	±0,09	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	< 0,087		2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	7,0	±1,4	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	27	±5	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,36	±0,11	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,11	±0,02	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	29	±6	120	500

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022653 del 04/07/2022

Parametro	11.54	Discillata		B. 4===	
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	20	±4	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	36	±7	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	23	±5	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	65	±13	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,014	±0,005	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,010	±0,004	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0098	±0,0034	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,015	±0,005	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,016	±0,006	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,022	±0,008	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0021	±0,0007	0,1	10
Dibenzo (a,l) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0036	±0,0013	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0026	±0,0009	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0042	±0,0015	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,013	±0,005	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,033	±0,012	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,15		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0022653 del 04/07/2022

Parametro					<u> </u>
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/0 Colonna A	06 - Terreni Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0010	±0,0003	0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,00000016		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	16	±6		
OCDF EPA 1613B 1994	ng/kg	1,3	±0,5		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	1,7	±0,7		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	1,1	±0,4		
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	< 0,16			
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,16			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,16			
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,16			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,16			
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,16			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,16			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,16			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,16			
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	0,18	±0,07		
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	0,18	±0,07		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022653 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/0 Colonna A	06 - Terreni Colonna B
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,032			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	0,079	±0,032		
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00039	±0,00014	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,19		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	< 1,7		50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	41,10	±4,11		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	58,90	±5,89		

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022653 del 04/07/2022 File firmato digitalmente.

> Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022653

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022654 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S13 1-4

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: \$13

Prelevato da: Personale ambiente s.p.a. - Raspolli Marco

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 4/collesalvetti

Data Prelievo: **05/04/2022**Data Accettazione: **07/04/2022**

Data Inizio Analisi: 07/04/2022 Data Fine Analisi: 27/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	upH	8,9	±0,2		
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	21	±4		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	94	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	29	±6	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,67	±0,13	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,32	±0,07	2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	12	±2	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	42	±8	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,42	±0,13	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,23	±0,05	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	47	±9	120	500

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022654 del 04/07/2022

Parametro	11 84	Diareltete		D.1 450**	20 T
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	52	±10	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	140	±28	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	34	±7	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	180	±36	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0085	±0,0030	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,017	±0,006	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0078	±0,0027	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,011	±0,004	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,012	±0,004	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,021	±0,007	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,003		0,1	10
Dibenzo (a,I) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0041	±0,0015	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,003		0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,003		0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0045	±0,0016	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0097	±0,0036	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,019	±0,007	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,11		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,003		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,003		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022654 del 04/07/2022

Parametro	11.54	Diaultoto		B. 4555	
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/0 Colonna A	6 - Terreni Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0045	±0,0014	0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,0000013		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	47	±19		
OCDF EPA 1613B 1994	ng/kg	5,5	±2,2		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	7,1	±2,9		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	7,3	±2,9		
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	0,61	±0,24		
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	0,44	±0,17		
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	1,3	±0,5		
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	0,73	±0,29		
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	1,1	±0,5		
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,25			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,25			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,25			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	0,57	±0,23		
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	1,5	±0,6		
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	0,94	±0,37		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022654 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/0 Colonna A	06 - Terreni Colonna B
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,049			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	0,90	±0,36		
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0024	±0,0008	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,2		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	11	±3	50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	59,13	±5,91		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	40,87	±4,09		

(*) - Prova non accreditata ACCREDIA

▶ Valore uguale o superiore al limite indicato per il parametro

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022654 del 04/07/2022 valori di riferimento

File firmato digitalmente.

Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022654

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022858 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S14 (0-1 m)1

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: \$14

Prelevato da: Personale ambiente s.p.a. - Mannocci / Raspolli

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 1/collesalvetti

Data Prelievo: 07/04/2022

Data Accettazione: 08/04/2022

Data Inizio Analisi: 08/04/2022 Data Fine Analisi: 27/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	upH	8,2	±0,2		
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	16	±3		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	88	±4		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	9,2	±1,8	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,63	±0,13	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	< 0,13		2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	12	±2	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	38	±8	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,31	±0,09	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,91	±0,18	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	41	±8	120	500

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022858 del 04/07/2022

Parametro					1
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	29	±6	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	28	±6	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	27	±5	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	68	±14	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0074	±0,0026	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0022	±0,0008	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0086	±0,0030	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0071	±0,0025	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0025	±0,0009	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,012	±0,004	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00080	±0,00028	0,1	10
Dibenzo (a,l) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0020	±0,0007	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00084	±0,00029	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0003		0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0024	±0,0008	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0060	±0,0023	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,011	±0,004	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,063		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0003		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0003		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018 Alaclor EPA 3545A 2007 + EPA 8270E 2018 Aldrin EPA 3545A 2007 + EPA 8270E 2018 Atrazina EPA 3545A 2007 + EPA 8270E 2018 alfa - esaclorocicloesano	mg/kg mg/kg mg/kg	< 0,0003 < 0,0005 < 0,0003		0,01 0,01 0,01	1 0,1 1

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022858 del 04/07/2022

Downwater							
Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/06 Colonna A	6 - Terreni Colonna B		
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5		
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5		
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1		
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0034	±0,0010	0,01	0,1		
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1		
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2		
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,0000013		0,00001	0,0001		
OCDD EPA 1613B 1994	ng/kg	33	±13				
OCDF EPA 1613B 1994	ng/kg	3,1	±1,2				
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	3,1	±1,2				
1,2,3,4,6,7,8-HpCDF <i>EPA 1613B 1994</i>	ng/kg	2,1	±0,9				
1,2,3,4,7,8,9-HpCDF <i>EPA 1613B 1994</i>	ng/kg	< 0,25					
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,25					
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,25					
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,25					
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	0,26	±0,11				
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,25					
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,25					
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,25					
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,25					
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,25					
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,25					

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022858 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,050			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	0,12	±0,05		
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0013	±0,0004	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,19		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	< 2,6		50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	60,36	±6,04		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	39,64	±3,96		

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022858 del 04/07/2022 File firmato digitalmente.

> Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022858

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022859 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S14 (1-3.7 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: S14

Prelevato da: Personale ambiente s.p.a. - Mannocci / Raspolli

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 2/collesalvetti

Data Prelievo: 07/04/2022

Data Accettazione: 08/04/2022

Data Inizio Analisi: 08/04/2022 Data Fine Analisi: 27/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	ирН	9,2	±0,2		
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	15	±3		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	94	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	5,0	±1,0	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,40	±0,08	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,40	±0,08	2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	7,1	±1,4	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	30	±6	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,14	±0,04	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,068	±0,014	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	31	±6	120	500

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0022859 del 04/07/2022

Parametro				<u> </u>	1
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	21	±4	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	34	±7	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	17	±4	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	65	±13	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,025	±0,009	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,027	±0,009	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,020	±0,007	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,022	±0,008	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,017	±0,006	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,041	±0,014	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0037	±0,0013	0,1	10
Dibenzo (a,l) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0047	±0,0016	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0076	±0,0027	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0028	±0,0010	0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0056	±0,0020	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,016	±0,006	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,051	±0,018	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,24		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0011		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0011		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022859 del 04/07/2022

Parametro	U.M.	Risultato		D 1 450"	OS Townsi
Metodo	U.IVI.	Risuitato	Incertezza	Colonna A	06 - Terreni Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0014	±0,0004	0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0067	±0,0020	0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,0000031		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	34	±13		
OCDF EPA 1613B 1994	ng/kg	6,6	±2,7		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	7,5	±3,0		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	9,2	±3,7		
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	0,65	±0,26		
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	0,73	±0,29		
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	1,7	±0,7		
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	1,1	±0,4		
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	1,8	±0,7		
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	0,78	±0,31		
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,20			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	0,66	±0,26		
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	1,7	±0,7		
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	1,9	±0,8		
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	2,6	±1,0		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022859 del 04/07/2022

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.Lgs 152/0 Colonna A	06 - Terreni Colonna B	
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	0,25	±0,10			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	1,7	±0,7			
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0017	±0,0006	0,06	5	
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,15		10	250	
Idrocarburi C>12 ISO 16703:2004	mg/kg	6,8	±1,9	50	750	
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente				
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000	
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	47,24	±4,72			
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	52,76	±5,28			

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022859 del 04/07/2022 File firmato digitalmente.

> Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022859

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022651 del 04/07/2022

Spett.

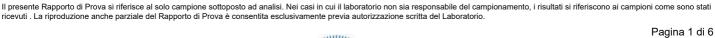
Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S15 0-1

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: S15

Prelevato da: Personale ambiente s.p.a. - Raspolli Marco


Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 1/collesalvetti

Data Prelievo: **05/04/2022**Data Accettazione: **07/04/2022**

Data Inizio Analisi: 07/04/2022 Data Fine Analisi: 27/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152 Colonna A	06 - Terreni Colonna B
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	ирН	9,1	±0,2		
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	14	±3		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	96	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	7,0	±1,4	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,36	±0,07	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,30	±0,06	2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	19	±4	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	31	±6	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,24	±0,07	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,24	±0,05	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	36	±7	120	500

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0022651 del 04/07/2022

Parametro	U.M.	Risultato		D L ac 452/	06 - Terreni
Metodo	U.IVI.	การนาเสเบ	Incertezza	Colonna A	Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	54	±11	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	35	±7	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	29	±6	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	85	±17	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,079	±0,028	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,12	±0,04	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,054	±0,019	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,076	±0,026	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,081	±0,028	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,14	±0,05	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0097	±0,0034	0,1	10
Dibenzo (a,l) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,016	±0,006	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,020	±0,007	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0048		0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,020	±0,007	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,061	±0,023	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,16	±0,06	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,84		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0048		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0048		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022651 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Las 152/	06 - Terreni Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0050	±0,0015	0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,0000012		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	100	±42		
OCDF EPA 1613B 1994	ng/kg	6,6	±2,6		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	12	±5		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	5,7	±2,3		
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	0,31	±0,13		
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,20			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	1,4	±0,6		
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,20			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	0,70	±0,28		
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,20			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,20			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,20			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	0,91	±0,36		
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	0,72	±0,29		
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	0,88	±0,35		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0022651 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Las 152/ Colonna A	06 - Terreni Colonna B
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,040			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	0,95	±0,38		
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0030	±0,0010	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,16		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	7,2	±2,0	50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	50,89	±5,09		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	49,11	±4,91		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0022651 del 04/07/2022

22LA0022651/01 eluato UNI 10802:2013 DM 05/02/1998

Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
Residuo secco a 105°C UNI EN 14346:2007	%p/p	87	±4		
Conducibilità UNI EN 12457-2:2004 + UNI EN 27888:1995	μS/cm	188	±11		
Nitrati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0,37	±0,04	50	
Fluoruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0,55	±0,06	1,5	
Solfati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	25	±3	250	
Cloruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	2,7	±0,3	100	
Cianuri UNI EN 12457-2:2004 + APAT CNR IRSA 4070 Man 29 2003	μg/l	< 10		50	
Bario UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	0,054	±0,011	1	
Rame UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	0,013	±0,003	0,05	
Zinco UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	0,022	±0,004	3	
Berillio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,40		10	
Cobalto UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 5,0		250	
Nichel UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	6,9	±1,4	10	
Vanadio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	32	±6	250	
Arsenico UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	5,3	±1,1	50	
Cadmio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,50		5	
Cromo totale UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	12	±2	50	
Piombo UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	8,7	±1,7	50	
Selenio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	µg/I	< 1,0		10	
Mercurio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,10		1	
Amianto (ricerca quantitativa) DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI EN 1245	mg/l	< 10	200 40/42/4004 4# 0	₄ 30	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022651 del 04/07/2022

22LA0022651/01 eluato UNI 10802:2013 DM 05/02/1998

	Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
	Richiesta chimica di ossigeno (COD) UNI EN 12457-2:2004 + ISO 15705:2002	mg/l	19	±5	30	
*	pH DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI EN 1	upH 12457-2:2004 + AF	8,10 PAT CNR IRSA 2060	±0,20 Man 29 2003	5,5÷12	

(*) - Prova non accreditata ACCREDIA

▶ Valore uguale o superiore al limite indicato per il parametro

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al relativo RL.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

l imiti

Allegato 3 al Decreto Ministeriale del 05/02/1998 Individuazione dei rifiuti non pericolosi sottoposti alle procedure semplificate di recupero ai sensi degli articoli 31 e 33 del decreto legislativo 5 febbraio 1997, n. 22 Concentrazioni limite.

Terreni ad uso Verde pubblico, privato e residenziale, commerciale e industriale Dlgs152:2006: D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

File firmato digitalmente da:

Responsabile Chimico
Dott. Fallica Mauro Placido
N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E
DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022651

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

I AR Nº 05101

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022652 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S15 1-4

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: S15

Prelevato da: Personale ambiente s.p.a. - Raspolli Marco

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: 2/collesalvetti

Data Prelievo: **05/04/2022**Data Accettazione: **07/04/2022**

Data Inizio Analisi: 07/04/2022 Data Fine Analisi: 27/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/ Colonna A	06 - Terreni Colonna B
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	upH	9,2	±0,2		
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	14	±3		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	92	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	23	±5	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,68	±0,14	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	< 0,12		2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	12	±2	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	43	±9	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,27	±0,08	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,11	±0,02	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	47	±10	120	500

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022652 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	23	±5	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	31	±6	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	32	±6	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	62	±12	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,28	±0,10	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,39	±0,14	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,26	±0,09	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,27	±0,10	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,34	±0,12	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,37	±0,13	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,037	±0,013	0,1	10
Dibenzo (a,l) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,053	±0,019	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,063	±0,022	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0028		0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,081	±0,028	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,30	±0,11	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,62	±0,22	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	3,1		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0028		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0028		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022652 del 04/07/2022

Parametro		Discitle 6			
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0046	±0,0014	0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0068	±0,0020	0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,000000027		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	11	±4		
OCDF EPA 1613B 1994	ng/kg	0,59	±0,23		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	1,0	±0,4		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	0,53	±0,21		
1,2,3,4,7,8,9-HpCDF <i>EPA</i> 1613B 1994	ng/kg	< 0,23			
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,23			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,23			
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,23			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,23			
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,23			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,23			
1,2,3,7,8-PeCDD <i>EPA</i> 1613B 1994	ng/kg	< 0,23			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,23			
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,23			
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,23			

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022652 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/0 Colonna A	06 - Terreni Colonna B
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,046			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	< 0,046			
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0061	±0,0021	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,18		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	4,3	±1,2	50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	55,86	±5,59		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	44,14	±4,41		

(*) - Prova non accreditata ACCREDIA

▶ Valore uguale o superiore al limite indicato per il parametro

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022652 del 04/07/2022 valori di riferimento

File firmato digitalmente.

Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022652

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022663 del 04/07/2022

Spett. **Ambiente s.p.a.** Via Frassina, 21 54033 Nazzano - Carrara (MS)

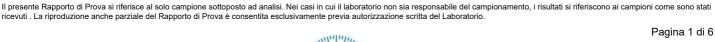
Denominazione del Campione: Campione di terreno - S16 (0-1 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: S16

Prelevato da: Personale ambiente s.p.a. - Mannocci Mattia

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)


Verbale di prelievo n°: 9/collesalvetti

Data Prelievo: 06/04/2022

Data Accettazione: 07/04/2022

Data Inizio Analisi: 07/04/2022 Data Fine Analisi: 27/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/ Colonna A	06 - Terreni Colonna B
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	ирН	8,9	±0,2		
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	15	±3		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	96	±5		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	4,3	±0,9	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,23	±0,05	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	< 0,13		2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	6,5	±1,3	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	21	±4	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,23	±0,07	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,16	±0,03	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	15	±3	120	500

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022663 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Las 152/06 - Terreni Colonna A Colonna B	
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	36	±7	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	30	±6	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	14	±3	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	39	±8	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,013	±0,005	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,022	±0,008	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0097	±0,0034	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,014	±0,005	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,016	±0,006	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,025	±0,009	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0038	±0,0013	0,1	10
Dibenzo (a,l) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0051	±0,0018	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0050	±0,0017	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,003		0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0054	±0,0019	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,012	±0,005	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,027	±0,010	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,16		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,003		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,003		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022663 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Las 152/0	
			IIICGI (GZZA	Colonna A	Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0039	±0,0012	0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,0000004		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	39	±16		
OCDF EPA 1613B 1994	ng/kg	8,2	±3,3		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	4,7	±1,9		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	5,6	±2,3		
1,2,3,4,7,8,9-HpCDF <i>EPA</i> 1613B 1994	ng/kg	< 0,26			
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,26			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,26			
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,26			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,26			
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,26			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,26			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,26			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,26			
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	0,39	±0,16		
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	0,36	±0,14		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022663 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Las 152/ Colonna A	06 - Terreni Colonna B
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,052			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	0,24	±0,10		
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00097	±0,00034	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,18		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	< 2,6		50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	63,89	±6,39		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	36,11	±3,61		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022663 del 04/07/2022

22LA0022663/01 eluato UNI 10802:2013 DM 05/02/1998

Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
Residuo secco a 105°C UNI EN 14346:2007	%p/p	90	±5		
Conducibilità UNI EN 12457-2:2004 + UNI EN 27888:1995	μS/cm	184			
Nitrati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0,26	±0,03	50	
Fluoruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0,67	±0,07	1,5	
Solfati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	45	±5	250	
Cloruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	3,1	±0,3	100	
Cianuri UNI EN 12457-2:2004 + APAT CNR IRSA 4070 Man 29 2003	μg/l	< 10		50	
Bario UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0,050		1	
Rame UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0,0050		0,05	
Zinco UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0,020		3	
Berillio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,40		10	
Cobalto UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 5,0		250	
Nichel UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	2,6	±0,5	10	
Vanadio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	6,9	±1,4	250	
Arsenico UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	1,9	±0,4	50	
Cadmio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,50		5	
Cromo totale UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 5,0		50	
Piombo UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	3,2	±0,6	50	
Selenio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	1,1	±0,2	10	
Mercurio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0,10		1	
Amianto (ricerca quantitativa) DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI EN 1245	mg/l	< 10		₄ 30	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022663 del 04/07/2022

22LA0022663/01 eluato UNI 10802:2013 DM 05/02/1998

Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
Richiesta chimica di ossigeno (COD) UNI EN 12457-2:2004 + ISO 15705:2002	mg/l	13	±3	30	
* pH * DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI EN	upH 12457-2:2004 + AF	8,03 PAT CNR IRSA 2060	Man 29 2003	5,5÷12	

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al relativo RL.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

Limiti

Allegato 3 al Decreto Ministeriale del 05/02/1998 Individuazione dei rifiuti non pericolosi sottoposti alle procedure semplificate di recupero ai sensi degli articoli 31 e 33 del decreto legislativo 5 febbraio 1997, n. 22 Concentrazioni limite.

Terreni ad uso Verde pubblico, privato e residenziale, commerciale e industriale Dlgs152:2006: D.Lgs 152/06 - Terreni: Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

File firmato digitalmente da:

Responsabile Chimico
Dott. Fallica Mauro Placido
N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E
DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022663

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

I AR Nº 05101

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022664 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S16 (1-3.3 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: S16

Prelevato da: Personale ambiente s.p.a. - Mannocci Mattia

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo nº: 10/collesalvetti

Data Prelievo: 06/04/2022

Data Accettazione: 07/04/2022

Data Inizio Analisi: 07/04/2022 Data Fine Analisi: 27/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	upH	9,5	±0,2		
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	14	±3		
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	85	±4		
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	11	±2	20	50
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,53	±0,11	2	10
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,11	±0,02	2	15
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	10	±2	20	250
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	31	±6	150	800
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,19	±0,06	2	15
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,13	±0,03	1	5
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	37	±7	120	500

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022664 del 04/07/2022

Parametro					
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	30	±6	100	1000
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	36	±7	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	23	±5	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	80	±16	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,025	±0,009	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,040	±0,014	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,024	±0,009	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,024	±0,008	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,029	±0,010	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,046	±0,016	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0040	±0,0014	0,1	10
Dibenzo (a,I) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0067	±0,0023	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0089	±0,0031	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0012		0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0078	±0,0027	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,022	±0,008	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,052	±0,018	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,29		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0012		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0012		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022664 del 04/07/2022

Davamatua					
Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/06 Colonna A	6 - Terreni Colonna B
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0025	±0,0007	0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0072	±0,0022	0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,00000026		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	23	±9		
OCDF EPA 1613B 1994	ng/kg	4,0	±1,6		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	2,6	±1,1		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	4,4	±1,8		
1,2,3,4,7,8,9-HpCDF <i>EPA</i> 1613B 1994	ng/kg	< 0,18			
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	0,18	±0,07		
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,18			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,18			
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,18			
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	0,21	±0,09		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022664 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,037			
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	0,37	±0,15		
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0014	±0,0005	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,19		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	6,6	±1,9	50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	45,12	±4,51		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	54,88	±5,49		

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022664 del 04/07/2022 File firmato digitalmente.

> Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022664

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022087 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S17 (0-1 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: \$17

Prelevato da: Personale ambiente s.p.a. - Raspolli Marco

Metodo di Campionamento: A cura del cliente

Data Prelievo: **04/04/2022**Data Accettazione: **05/04/2022**

Data Inizio Analisi: 05/04/2022 Data Fine Analisi: 28/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152 Colonna A	/06 - Terreni Colonna B	
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	ирН	8,4	±0,2			
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	7,8	±1,6			
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	98	±5			
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	6,3	±1,3	20	50	
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,34	±0,07	2	10	
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	< 0,16		2	15	
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	5,1	±1,0	20	250	
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	31	±6	150	800	
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,29	±0,09	2	15	
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,23	±0,05	1	5	
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	28	±6	120	500	
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	42	±8	100	1000	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022087 del 04/07/2022

Parametro					1
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	34	±7	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	19	±4	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	45	±9	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,020	±0,007	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,030	±0,010	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,014	±0,005	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,024	±0,008	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,023	±0,008	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,039	±0,014	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0044	±0,0016	0,1	10
Dibenzo (a,I) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0066	±0,0023	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0044	±0,0015	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0064	±0,0022	0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0074	±0,0026	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,020	±0,008	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,038	±0,013	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,24		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00031		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00031		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022087 del 04/07/2022

Parametro	U.M.	Risultato		D I as 152/	06 - Terreni
Metodo	J.IVI.	Misuitato	Incertezza	Colonna A	Colonna B
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0015	±0,0004	0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,00000044		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	34	±13		
OCDF EPA 1613B 1994	ng/kg	7,9	±3,2		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	3,0	±1,2		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	3,9	±1,5		
1,2,3,4,7,8,9-HpCDF <i>EPA</i> 1613B 1994	ng/kg	< 0,33			
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,33			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	0,53	±0,21		
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,33			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	0,58	±0,23		
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,33			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,33			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,33			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	0,39	±0,16		
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,33			
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	0,33	±0,13		
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,066			

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022087 del 04/07/2022

Parametro					
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	0,30	±0,12		
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0014	±0,0005	0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,19		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	< 3,4		50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	79,44	±7,94		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	20,56	±2,06		

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

Limiti:

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

File firmato digitalmente.

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022087 del 04/07/2022

Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022087

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022088 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S17 (1-3.5 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: \$17

Prelevato da: Personale ambiente s.p.a. - Raspolli Marco

Metodo di Campionamento: A cura del cliente

Data Prelievo: **04/04/2022**Data Accettazione: **05/04/2022**

Data Inizio Analisi: 05/04/2022 Data Fine Analisi: 28/04/2022

Parametro <i>Metod</i> o	U.M.	Risultato	Incertezza	D.Lgs 152 Colonna A	/06 - Terreni Colonna B	
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	ирН	7,4	±0,2			
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	8,5	±1,7			
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	100	±5			
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	4,5	±0,9	20	50	
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,61	±0,12	2	10	
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	< 0,14		2	15	
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	20	±4	20	250	
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	100	±21	150	800	
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,23	±0,07	2	15	
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,085	±0,017	1	5	
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	110	±22	120	500	
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	18	±4	100	1000	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022088 del 04/07/2022

Parametro	11 84	Dioreltoto		D.I 450	OS Townshi
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	52	±10	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	27	±6	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	74	±15	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00040	±0,00014	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00095	±0,00033	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0015	±0,0005	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0017	±0,0006	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0019	±0,0007	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0031	±0,0011	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00037	±0,00013	0,1	10
Dibenzo (a,I) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00034		0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00034		0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0017	±0,0006	0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00048	±0,00017	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,00081	±0,00031	0,1	5
Pirene <i>EPA 3545A 2007 + EPA 8270E 2018</i>	mg/kg	0,0021	±0,0007	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,015		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,000067		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,000067		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
	mg/kg	< 0,0005		0,01	0,5

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022088 del 04/07/2022

Parametro	U.M.	Risultato	Incertezza	D.Lgs 152/0	16 - Terreni
Metodo			ilicei (ezza	Colonna A	Colonna B
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin <i>EPA 3545A 2007 + EPA 8270E 2018</i>	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,000000041		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	28	±11		
OCDF EPA 1613B 1994	ng/kg	1,4	±0,6		
1,2,3,4,6,7,8-HpCDD <i>EPA</i> 1613B 1994	ng/kg	1,1	±0,5		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	< 0,29			
1,2,3,4,7,8,9-HpCDF <i>EPA</i> 1613B 1994	ng/kg	< 0,29			
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,29			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,29			
1,2,3,6,7,8-HxCDD <i>EPA</i> 1613B 1994	ng/kg	< 0,29			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,29			
1,2,3,7,8,9-HxCDD <i>EPA</i> 1613B 1994	ng/kg	< 0,29			
1,2,3,7,8,9-HxCDF <i>EPA</i> 1613B 1994	ng/kg	< 0,29			
1,2,3,7,8-PeCDD <i>EPA</i> 1613B 1994	ng/kg	< 0,29			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,29			
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,29			
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,29			
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,058			

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022088 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/ Colonna A	06 - Terreni Colonna B
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	< 0,058		L	
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,000097		0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,18		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	< 3		50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	72,22	±7,22		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	27,78	±2,78		

(*) - Prova non accreditata ACCREDIA

▶ Valore uguale o superiore al limite indicato per il parametro

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

Limiti:

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

File firmato digitalmente.

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022088 del 04/07/2022

Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022088

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022085 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S18 (0-1 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: \$18

Prelevato da: Personale ambiente s.p.a. - Raspolli Marco

Metodo di Campionamento: A cura del cliente

Data Prelievo: **04/04/2022**Data Accettazione: **05/04/2022**

Data Inizio Analisi: 05/04/2022 Data Fine Analisi: 28/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152 Colonna A	/06 - Terreni Colonna B	
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	ирН	7,9	±0,2			
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	5,4	±1,1			
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	99	±5			
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	9,8	±2,0	20	50	
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,56	±0,11	2	10	
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	< 0,14		2	15	
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	11	±2	20	250	
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	33	±7	150	800	
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,37	±0,11	2	15	
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,091	±0,018	1	5	
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	45	±9	120	500	
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	14	±3	100	1000	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022085 del 04/07/2022

Parametro					1
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	22	±4	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	23	±5	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	52	±10	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,19	±0,07	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,21	±0,07	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,13	±0,05	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,18	±0,06	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,15	±0,05	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,32	±0,11	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,025	±0,009	0,1	10
Dibenzo (a,I) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,046	±0,016	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,029	±0,010	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,055	±0,019	0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,047	±0,017	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,13	±0,05	0,1	5
Pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,41	±0,14	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	1,9		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00067		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00067		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022085 del 04/07/2022

Parametro					
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,000000031		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	10	±4		
OCDF EPA 1613B 1994	ng/kg	1,1	±0,4		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	1,3	±0,5		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	0,59	±0,24		
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	< 0,26			
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,26			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,26			
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,26			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,26			
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,26			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,26			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,26			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,26			
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,26			
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,26			
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	< 0,053			

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022085 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	< 0,053			
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00084		0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,17		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	< 3		50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	68,51	±6,85		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	31,49	±3,15		

(*) - Prova non accreditata ACCREDIA

▶ Valore uguale o superiore al limite indicato per il parametro

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

Limiti:

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

File firmato digitalmente.

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022085 del 04/07/2022

Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022085

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Rapporto di prova n°: 22LA0022086 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S18 (1-4 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: \$18

Prelevato da: Personale ambiente s.p.a. - Raspolli Marco

Metodo di Campionamento: A cura del cliente

Data Prelievo: **04/04/2022**Data Accettazione: **05/04/2022**

Data Inizio Analisi: 05/04/2022 Data Fine Analisi: 28/04/2022

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152 Colonna A	/06 - Terreni Colonna B	
pH DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met III.1	ирН	8,7	±0,2			
FOC - frazione di carbonio organico DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met VII.3	g/Kg	4,1	±0,8			
Residuo secco a 105°C DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.2	%p/p	100	±5			
Arsenico EPA 3051A 2007 + EPA 6020B 2014	mg/kg	7,2	±1,4	20	50	
Berillio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,57	±0,11	2	10	
Cadmio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,16	±0,03	2	15	
Cobalto EPA 3051A 2007 + EPA 6020B 2014	mg/kg	14	±3	20	250	
Cromo totale EPA 3051A 2007 + EPA 6020B 2014	mg/kg	38	±8	150	800	
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0,21	±0,06	2	15	
Mercurio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	0,84	±0,17	1	5	
Nichel EPA 3051A 2007 + EPA 6020B 2014	mg/kg	56	±11	120	500	
Piombo EPA 3051A 2007 + EPA 6020B 2014	mg/kg	160	±32	100	1000	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022086 del 04/07/2022

Parametro					
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
Rame EPA 3051A 2007 + EPA 6020B 2014	mg/kg	110	±23	120	600
Vanadio EPA 3051A 2007 + EPA 6020B 2014	mg/kg	22	±4	90	250
Zinco EPA 3051A 2007 + EPA 6020B 2014	mg/kg	97	±19	150	1500
Benzo (a) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,081	±0,029	0,5	10
Benzo (a) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,099	±0,035	0,1	10
Benzo (b) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,057	±0,020	0,5	10
Benzo (k) fluorantene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,056	±0,019	0,5	10
Benzo (g,h,i) perilene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,054	±0,019	0,1	10
Crisene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,12	±0,04	5	50
Dibenzo (a,e) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,0086	±0,0030	0,1	10
Dibenzo (a,I) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,016	±0,006	0,1	10
Dibenzo (a,i) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,020	±0,007	0,1	10
Dibenzo (a,h) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,035	±0,012	0,1	10
Dibenzo (a,h) antracene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,018	±0,006	0,1	10
Indeno (1,2,3 - c,d) pirene EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,041	±0,015	0,1	5
Pirene <i>EPA 3545A 2007 + EPA 8270E 2018</i>	mg/kg	0,18	±0,06	5	50
Sommatoria IPA (da 25 a 37) All 5 Tab 1 DLgs 152/06 EPA 3545A 2007 + EPA 8270E 2018	mg/kg	0,79		10	100
Alaclor EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00028		0,01	1
Aldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Atrazina EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00028		0,01	1
alfa - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
beta - esaclorocicloesano EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022086 del 04/07/2022

Parametro	U.M.	Risultato		D.Las 152/0	16 - Terreni
Metodo			Incertezza	Colonna A	Colonna B
gamma - esaclorocicloesano (Lindano) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,5
Clordano (cis, trans) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0001		0,01	0,1
DDD, DDT, DDE EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Dieldrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,0005		0,01	0,1
Endrin EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,001		0,01	2
Sommatoria diossine e furani espressa come tossicità equivalente secondo I-TEF EPA 1613B 1994 + NATO CCMS Report n°176 1988	mg I-TEQ/kg	0,0000013		0,00001	0,0001
OCDD EPA 1613B 1994	ng/kg	8,8	±3,5		
OCDF EPA 1613B 1994	ng/kg	0,95	±0,38		
1,2,3,4,6,7,8-HpCDD EPA 1613B 1994	ng/kg	1,2	±0,5		
1,2,3,4,6,7,8-HpCDF EPA 1613B 1994	ng/kg	1,0	±0,4		
1,2,3,4,7,8,9-HpCDF EPA 1613B 1994	ng/kg	< 0,31			
1,2,3,4,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,31			
1,2,3,4,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,31			
1,2,3,6,7,8-HxCDD EPA 1613B 1994	ng/kg	< 0,31			
1,2,3,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,31			
1,2,3,7,8,9-HxCDD EPA 1613B 1994	ng/kg	< 0,31			
1,2,3,7,8,9-HxCDF EPA 1613B 1994	ng/kg	< 0,31			
1,2,3,7,8-PeCDD EPA 1613B 1994	ng/kg	< 0,31			
1,2,3,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,31			
2,3,4,6,7,8-HxCDF EPA 1613B 1994	ng/kg	< 0,31			
2,3,4,7,8-PeCDF EPA 1613B 1994	ng/kg	< 0,31			
2,3,7,8-TCDD EPA 1613B 1994	ng/kg	0,080	±0,032		

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0022086 del 04/07/2022

Parametro					
Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/ Colonna A	06 - Terreni Colonna B
2,3,7,8-TCDF EPA 1613B 1994	ng/kg	0,14	±0,06		
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3545A 2007 + EPA 8270E 2018	mg/kg	< 0,00035		0,06	5
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0,15		10	250
Idrocarburi C>12 ISO 16703:2004	mg/kg	18	±5	50	750
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Asse nte	Assente			
Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000		1000	1000
Frazione granulometrica < 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	73,65	±7,37		
Frazione granulometrica > 2 mm e < 2 cm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.1	%p/p	26,35	±2,63		

(*) - Prova non accreditata ACCREDIA

▶ Valore uguale o superiore al limite indicato per il parametro

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

Limiti:

D.Lgs 152/06 - Terreni:

Colonna A: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Verde pubblico, privato e residenziale)

Colonna B: Tabella 1 Allegato 5 al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i., Concentrazione Soglia di contaminazione nel suolo e nel sottosuolo (Siti ad uso Commerciale e Industriale)

I dati analitici riportati sono determinati riferendosi alla totalità dei materiali secchi, comprensiva anche dello scheletro, e come tali confrontabili con i valori di riferimento

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

File firmato digitalmente.

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022086 del 04/07/2022

Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022086

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Valutazione della Conformità al Valore limite di legge secondo il man. ISPRA 52/2009

PG-AMB-08.1 All.9 rev.02

Nota tecnica relativa alla Verifica della Conformità

RIFERIMENTI

Numero Rapporto di Prova 22LA0022651

Laboratorio di analisi e

AGROLAB Ambiente S.r.l. (nº Accreditamento 0510)

n. certificato ACCREDIA:

Benzo (a) pirene

Unità di misura

mg/kg

Gestione Prova

Prova Accreditata

Risultato RdP

Prova

0,12

Incertezza RdP

0,04

Valore limite di legge

0,1

Cifre decimali del valore limite

2

RISULTATI

		х	VL
Il risultato supera il limite	SI	0,12	0,1
Il risultato arrotondato supera il limite	SI	0,12	0,1
II risultato sottratta la guard band al 95% supera ancora il limite (oltre ogni ragionevole dubbio)	NO	g 0,033	x-g 0,087

GIUDIZIO

Il campione

22LA0022651

per il parametro

Benzo (a) pirene

ai sensi del Man ISPRA 52/2009 risulta

NON NON-CONFORME

Luogo e Data verifica

Carrara, 09/05/2022

File firmato digitalmente da: Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Note: la valutazione di conformità si basa sui risultati come compaiono nel RdP. "g" è la guard band arrotondata ad un decimale in più del VL. g" è calcolato sulla base dell'incertezza considerando un fattore k' di copertura (1,645 come da nota ISPRA) a fronte del fattore di copertura applicato nel apporto di prova (k=2, coerente con g.d.l. > 10).

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

 $\textbf{PEC:} \ a grolab ambiente @messaggipec. it - www. a grolab. it$

Rapporto di prova nº: 22LA0022665 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S8 (0-1 m) - Granulometria

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

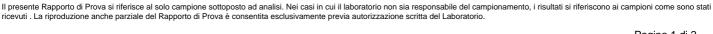
Punto di prelievo: \$8

Prelevato da: Personale ambiente s.p.a. - Mannocci Mattia

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo nº: 3/collesalvetti

Data Prelievo: 06/04/2022


Data Accettazione: 07/04/2022

Data Inizio Analisi: 07/04/2022 Data Fine Analisi: 28/04/2022

Parametro				
Metodo	U.M.	Risultato	Incertezza	
Densità apparente	g/cm3			
CNR IRSA 3 Q 64 Vol 2 1984		1,3		
Sabbia Fine	%p/p			
DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.5		55,1	±8,3	
Sabbia Grossa	%p/p			
DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.5		< 0,1		
Limo Fine	%p/p		0.0	
DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.5		20,1	±3,0	
Limo Grosso	%p/p			
DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.5		11,8	±1,8	
Argilla	%p/p			
DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.5		13,0	±2,0	
Ghiaia > 2 mm	%p/p			
DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.3		41,1		

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati II laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022665 del 04/07/2022

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

File firmato digitalmente.

Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022665

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

 $\textbf{PEC:} \ a grolab ambiente @messaggipec. it - www. a grolab. it$

Rapporto di prova nº: 22LA0022666 del 04/07/2022

Spett.

Ambiente s.p.a.
Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S16 (1-1.3 m) - Granulometria

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: S16

Prelevato da: Personale ambiente s.p.a. - Mannocci Mattia

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo nº: 11/collesalvetti

Data Prelievo: 06/04/2022

Data Accettazione: 07/04/2022

Data Inizio Analisi: 07/04/2022 Data Fine Analisi: 28/04/2022

Parametro				
Metodo	U.M.	Risultato	Incertezza	
* Densità apparente CNR IRSA 3 Q 64 Vol 2 1984	g/cm3	1,3		
Sabbia Fine DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.5	%p/p	87,4	±13,1	
Sabbia Grossa DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.5	%p/p	< 0,1		
Limo Fine DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.5	%p/p	5,18	±0,78	
Limo Grosso DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.5	%p/p	4,68	±0,70	
Argilla DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.5	%p/p	2,73	±0,41	
 Ghiaia > 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.3 	%p/p	51,0		

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati II laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022666 del 04/07/2022

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

File firmato digitalmente.

Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022666

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

 $\textbf{PEC:} \ a grolab ambiente @messaggipec. it - www. a grolab. it$

Rapporto di prova nº: 22LA0022864 del 04/07/2022

Spett. Ambiente s.p.a. Via Frassina, 21 54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S5 (1.8-4.4 m) - Granulometria

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: S5

Prelevato da: Personale ambiente s.p.a. - Mannocci / Raspolli

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo nº: 5/collesalvetti

Data Prelievo: 07/04/2022 Data Accettazione: 08/04/2022

Data Inizio Analisi: 08/04/2022 Data Fine Analisi: 28/04/2022

Parametro				
Metodo	U.M.	Risultato	Incertezza	
* Densità apparente CNR IRSA 3 Q 64 Vol 2 1984	g/cm3	1,3		
Sabbia Fine DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.5	%p/p	50,8	±7,6	
Sabbia Grossa DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.5	%p/p	< 0,1		
Limo Fine DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.5	%p/p	18,0	±2,7	
Limo Grosso DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.5	%p/p	13,9	±2,1	
Argilla DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.5	%p/p	17,3	±2,6	
* Ghiaia > 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.3	%p/p	51,4		

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022864 del 04/07/2022

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

File firmato digitalmente.

Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022864

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

 $\textbf{PEC:} \ a grolab ambiente @messaggipec. it - www. a grolab. it$

Rapporto di prova nº: 22LA0022942 del 04/07/2022

Spett. Ambiente s.p.a. Via Frassina, 21 54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione di terreno - S2 (1-3 m)

Luogo di campionamento: Pista Ciclabile Ivo Mancini Comune di Collesalvetti Via Berlinguer Stagno

Punto di prelievo: S2

Prelevato da: Personale ambiente s.p.a. - Mannocci - Raspolli

Metodo di Campionamento: CNR IRSA Q 64 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo nº: 5/collesalvetti

Data Prelievo: 08/04/2022 Data Accettazione: 08/04/2022

Data Inizio Analisi: 08/04/2022 Data Fine Analisi: 04/05/2022

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	
Densità apparente CNR IRSA 3 Q 64 Vol 2 1984	g/cm3	1,3		
Sabbia Fine DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.5	%p/p	74,1	±11,1	
Sabbia Grossa DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.5	%p/p	< 0,1		
Limo Fine DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.5	%p/p	13,6	±2,0	
Limo Grosso DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.5	%p/p	10,3	±1,5	
Argilla DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.5	%p/p	2,00	±0,30	
Ghiaia > 2 mm DM 13/09/1999 SO n° 185 GU n° 248 21/10/1999 Met II.3	%p/p	< 0,1		

(*) - Prova non accreditata ACCREDIA

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al rispettivo RL.

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0022942 del 04/07/2022

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

File firmato digitalmente.

Responsabile Chimico Dott. Fallica Mauro Placido N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0022942

ricevuti . La riproduzione anche parziale del Rapporto di Prova è consentita esclusivamente previa autorizzazione scritta del Laboratorio.

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

ALLEGATO 4 RDP ACQUE SOTTERRANEE

ISO/IEC

N N

AGROLAB Ambiente S.r.l. a socio unico

Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231 carrara@agrolab.it www.agrolab.it

AMBIENTE S.P.A. Via Frassina, 21 54033 CARRARA (MS)

> 04.07.2022 Data

Cod. cliente 200245

RAPPORTO DI PROVA

Ordine 17061 - Collesalvetti (LI)

N. campione: 103822

Fattura a **200005 AMBIENTE S.P.A.** 90: Collesalvetti (LI) Progetto

Ricevimento campione: 04.04.2022 30.03.2022 Data Campionamento:

Campionato da: Committente (Personale ambiente s.p.a. - Borsacchi)

Descrizione del campione fornita dal Campione di acqua di falda - PZ1

cliente:

contrassegnate con il simbolo " *) '

Metodo di campionamento: APAT CNR IRSA 1030 Man 29 2003 - Prelievo effettuato a cura di

ambiente s.p.a.(*)

Via Berlinguer loc. Stagno, Collesalvetti (LI) -Luogo di campionamento

Pista ciclabile Ivo Mancini

Punto di campionamento Via Berlinguer, Collesalvetti (LI) - PZ1

> Inizio - fine U.M. Risultato Incertezza Tab_BW1 Metodo

Metalli e Specie Metalliche

Arsenico (As)	μg/l	4,13	+/- 0,83	10	04.04.22 - 21.04.22	EPA 6020B 2014
Berillio (Be)	μg/l	<0,40		4	04.04.22 - 21.04.22	EPA 6020B 2014
Cadmio (Cd)	μg/l	<0,50		5	04.04.22 - 21.04.22	EPA 6020B 2014
Cobalto (Co)	μg/l	<5,0		50	04.04.22 - 21.04.22	EPA 6020B 2014
Cromo totale (Cr)	μg/l	<5,0		50	04.04.22 - 21.04.22	EPA 6020B 2014
Cromo VI	μg/l	<0,50		5	04.04.22 - 04.04.22	EPA 7199 1996
Ferro (Fe)	μg/l	1170	+/- 230	200	04.04.22 - 21.04.22	EPA 6020B 2014
Manganese (Mn)	μg/l	1790	+/- 360	50	04.04.22 - 22.04.22	EPA 6020B 2014
Mercurio (Hg)	μg/l	<0,10		1	04.04.22 - 21.04.22	EPA 6020B 2014
Nichel (Ni)	μg/l	15,8	+/- 3,2	20	04.04.22 - 21.04.22	EPA 6020B 2014
Piombo (Pb)	μg/l	<1,0		10	04.04.22 - 21.04.22	EPA 6020B 2014
Rame (Cu)	μg/l	<5,0		1000	04.04.22 - 21.04.22	EPA 6020B 2014
Zinco (Zn)	μg/l	<20		3000	04.04.22 - 21.04.22	EPA 6020B 2014

_						21.07.22	
CEI	Berillio (Be)	µg/l	<0,40		4	04.04.22 - 21.04.22	EPA 6020B 2014
N	Cadmio (Cd)	µg/l	<0,50		5	04.04.22 - 21.04.22	EPA 6020B 2014
<u>a</u>	Cobalto (Co)	µg/l	<5,0		50	04.04.22 - 21.04.22	EPA 6020B 2014
opu	Cromo totale (Cr)	µg/l	<5,0		50	04.04.22 - 21.04.22	EPA 6020B 2014
secondo la	Cromo VI	µg/l	<0,50		5	04.04.22 - 04.04.22	EPA 7199 1996
	Ferro (Fe)	µg/l	1170	+/- 230	200	04.04.22 - 21.04.22	EPA 6020B 2014
accreditate	Manganese (Mn)	µg/l	1790	+/- 360	50	04.04.22 - 22.04.22	EPA 6020B 2014
accr	Mercurio (Hg)	µg/l	<0,10		1	04.04.22 - 21.04.22	EPA 6020B 2014
sono	Nichel (Ni)	µg/l	15,8	+/- 3,2	20	04.04.22 - 21.04.22	EPA 6020B 2014
to so	Piombo (Pb)	μg/l	<1,0		10	04.04.22 - 21.04.22	EPA 6020B 2014
nen	Rame (Cu)	µg/l	<5,0		1000	04.04.22 - 21.04.22	EPA 6020B 2014
documento	Zinco (Zn)	μg/l	<20		3000	04.04.22 - 21.04.22	EPA 6020B 2014
	Costituenti Inorganici Non Met	allici - Ani	oni		·		
questo	Cianuri liberi	µg/l	<10		50	04.04.22 - 04.04.22	M.U. 2251:08 p.to 8.2.1
.⊆	Fluoruri	µg/l	369	+/- 41	1500	04.04.22 - 05.04.22	APAT CNR IRSA 4020 Man 29 2003
riportate	Costituenti Organici - Compos	ti Aromati	ci				
e rip	Benzene	μg/l	0,0145	+/- 0,0044	1	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
prove			ω^{μ}				
Fe							pagina 1 di 5

Benzene	μg/l	0,0145	+/- 0,0044	1	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018

AGROLAB GROUP Your labs. Your service.

Cod. cliente

Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231 carrara@agrolab.it www.agrolab.it

Data 04.07.2022

200245

3							Inizio - fine	
		U.M.	Risultato I	Incertezza	Tab_BW1	•	analisi	Metodo
	Etilbenzene	μg/l	<0,010		50			EPA 5030C 2003 + EPA 8260D 2018
5	m+p-Xilene	µg/l	<0,020		10		04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
2	Stirene	μg/l	<0,010		25			EPA 5030C 2003 + EPA 8260D 2018
	Toluene	μg/l	<0,050		15			EPA 5030C 2003 + EPA 8260D 2018

				11.04.22	EPA 8260D 2018
Costituenti Organici - Compo	sti Alogenat	i			
Bromodiclorometano	μg/l	<0,010	0,17	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
cis-1,2-Dicloroetilene	μg/l	0,125 +	-/- 0,037	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
Clorometano	μg/l	<0,050	1,5	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
Cloruro di vinile	μg/l	<0,010	0,5	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
Dibromoclorometano	μg/l	<0,010	0,13	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
Esaclorobutadiene	μg/l	<0,010	0,15	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
Sommatoria organoalogenati	μg/l	<0,050 #6)	10	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
Tetracloroetilene (PCE)	μg/l	<0,050	1,1	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
trans-1,2-Dicloroetilene	μg/l	<0,010		04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
Tribromometano (Bromoformio)	μg/l	<0,0050	0,3	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
Tricloroetilene	μg/l	<0,010	1,5	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
Triclorometano (cloroformio)	μg/l	<0,010	0,15	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
1,1-Dicloroetano	μg/l	<0,010	810	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
1,1-Dicloroetilene	μg/l	<0,0050	0,05	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
1,1,2-Tricloroetano	μg/l	<0,010	0,2	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
1,1,2,2-Tetracloroetano	μg/l	<0,0050	0,05	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
1,2-Dibromoetano	μg/l	<0,00050	0,001	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
1,2-Dicloroetano	μg/l	<0,0050	3	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
1,2-Dicloroetilene	μg/l	0,125 #6) +	-/- 0,037 60	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
1,2-Dicloropropano	μg/l	<0,0050	0,15	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
1,2,3-Tricloropropano	μg/l	<0,00050	0,001	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018

RAPPORTO DI PROVA					Cod. cliente	200
Ordine N. campione:		061 - Collesalvetti (l 3 822	LI)			
	U.M.	Risultato	Incertezza	Tab BW1	Inizio - fine . analisi	Metodo
Etilbenzene	μg/l	<0,010		50	04.04.22 - 11.04.22	EPA 5030C 2003
m+p-Xilene	μg/l	<0,020		10	04.04.22 - 11.04.22	EPA 8260D 2018 EPA 5030C 2003
Stirene	μg/l	<0,010		25	04.04.22 - 11.04.22	EPA 8260D 2018 EPA 5030C 2003
Toluene	μg/l	<0,050		15	04.04.22 - 11.04.22	EPA 8260D 2018 EPA 5030C 2003 EPA 8260D 2018
Costituenti Organici - Compo	osti Alogena	⊥ ati			1.110 1.22	EPA 6260D 2016
Bromodiclorometano	µg/l	<0,010		0,17	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
cis-1,2-Dicloroetilene	μg/l	0,125	+/- 0,037		04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Clorometano	μg/l	<0,050		1,5	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Cloruro di vinile	μg/l	<0,010		0,5	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Dibromoclorometano	μg/l	<0,010		0,13	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Esaclorobutadiene	μg/l	<0,010		0,15	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Sommatoria organoalogenati	μg/l	<0,050 #6)		10	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Tetracloroetilene (PCE)	μg/l	<0,050		1,1	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
trans-1,2-Dicloroetilene	μg/l	<0,010			04.04.22 - 11.04.22	EPA 5030C 200
Tribromometano (Bromoformio)	μg/l	<0,0050		0,3	04.04.22 - 11.04.22	EPA 8260D 2013 EPA 5030C 2003 EPA 8260D 2013
Tricloroetilene	μg/l	<0,010		1,5	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2013
Triclorometano (cloroformio)	μg/l	<0,010		0,15	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,1-Dicloroetano	μg/l	<0,010		810	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,1-Dicloroetilene	μg/l	<0,0050		0,05	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,1,2-Tricloroetano	μg/l	<0,010		0,2	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,1,2,2-Tetracloroetano	μg/l	<0,0050		0,05	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,2-Dibromoetano	μg/l	<0,00050		0,001	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,2-Dicloroetano	μg/l	<0,0050		3	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,2-Dicloroetilene	μg/l	0,125 #6)	+/- 0,037	60	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,2-Dicloropropano	μg/l	<0,0050		0,15	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,2,3-Tricloropropano	μg/l	<0,00050		0,001	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Costituenti Organici - Idroca	rburi Policio	clici Aromatici			-	
Benzo(a)antracene	μg/l	0,00106	+/- 0,00032	0,1	04.04.22 - 11.04.22	EPA 3510C 1990 EPA 8270E 2018
Benzo(a)pirene	μg/l	,	+/- 0,00020	0,01	04.04.22 - 11.04.22	EPA 3510C 1996 EPA 8270E 2018
Benzo(b)fluorantene	μg/l	0,00070	+/- 0,00021	0,1	04.04.22 - 11.04.22	EPA 3510C 1996 EPA 8270E 2018
Benzo(g,h,i)perilene	μg/l	0,000293	+/- 0,000088	0,01	04.04.22 - 11.04.22	EPA 3510C 1996 EPA 8270E 2018
Benzo(k)fluorantene	μg/l	<0,00056		0,05	04.04.22 - 11.04.22	EPA 3510C 1996 EPA 8270E 2018
			+/- 0,00051			

ISO/IEC 17025:2018. Solamente le prove non accreditate sono contrassegnate con il simbolo

Clordano

4.4-DDD

4,4-DDE

4.4-DDT

CEI

S

<u>a</u>

DDD, DDT, DDE

AGROLAB Ambiente S.r.I. a socio unico

GROUP

Your labs. Your service.

Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231 carrara@agrolab.it www.agrolab.it

> Data 04.07.2022

> > Inizio fino

04.04.22 -09.04.22

04.04.22 -09.04.22

09.04.22

04.04.22 -09.04.22

04.04.22 -09.04.22

04.04.22

09.04.22

0,1

0,1

EPA 3510C 1996 +

EPA 3510C 1996 +

EPA 8270E 2018

EPA 8270E 2018

EPA 8270E 2018

EPA 8270E 2018

EPA 3510C 1996 +

EPA 3510C 1996 +

EPA 3510C 1996 +

Cod. cliente 200245

RAPPORTO DI PROVA

17061 - Collesalvetti (LI) Ordine

|μg/l

μg/l

μg/l

μg/l

μg/l

103822 N. campione:

					inizio - fine	
	U.M.	Risultato	Incertezza	Tab_BW1	. analisi	Metodo
Dibenzo(a,h)antracene	µg/l	<0,00056		0,01	04.04.22 - 11.04.22	EPA 3510C 1996 + EPA 8270E 2018
Indeno(1,2,3-c,d)pirene	μg/l	<0,00056		0,1	04.04.22 - 11.04.22	EPA 3510C 1996 + EPA 8270E 2018
Pirene	μg/l	0,0047		50	04.04.22 - 11.04.22	EPA 3510C 1996 + EPA 8270E 2018
Sommatoria IPA 31,32,33,36	μg/l	0,00099 #6)	+/- 0,00030	0,1	04.04.22 - 11.04.22	EPA 3510C 1996 + EPA 8270E 2018
Costituenti Organici - Pestici	di					
Aldrin	µg/l	<0,00056		0,03	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
alfa-esaclorocicloesano	μg/l	<0,00056		0,1	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
Atrazina	μg/l	<0,00056		0,3	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
Beta-esaclorocicloesano	μg/l	<0,00056		0,1	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018

3	DDD, DD1, DDL	μ9/1	\0,00030	0,1	09.04.22	EPA 8270E 2018
5	Dieldrin	μg/l	<0,00056	0,03	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
5	Endrin	μg/l	<0,00056	0,1	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
2	Sommatoria Fitofarmaci	μg/l	<0,00056 #6)	0,5	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
	2,4-DDD	μg/l	<0,00056		04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
2	2,4-DDE	μg/l	<0,00056		04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
_	2,4-DDT	μg/l	<0,00056		04.04.22 -	EPA 3510C 1996 +

<0,00056

<0,00056

<0.00056

<0,00056 #6

<0,00056 #6)

ossine		
 0000	O . G .	u

T,T-001	μ9/1	<0,00050		09.04.22	EPA 8270E 2018
Costituenti Organici - Polici	orobifenil	eteri			
PCB (Aroclor 1242, 1248, 1254, 1260)	μg/l	<0,00022	0,01	04.04.22 - 09.04.22	EPA 3510C 1996 EPA 8270E 2018
Diossine e Furani					
Equivalente di tossicità I-TEQ (NATO CCMS 1988)	u) µg/l	<0,00000025 #6)	0,000004	04.04.22 - 11.05.22	EPA 1613B 1994(RC)
OCDD	u) µg/l	<0,0000010		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
OCDF	u) µg/l	<0,000010		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,4,6,7,8-HPCDD	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,4,6,7,8-HPCDF	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,4,7,8-HXCDD	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,4,7,8-HXCDF	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,4,7,8,9-HPCDF	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,6,7,8-HXCDD	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,6,7,8-HXCDF	^{u)} μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)

Le prove riportate in questo documento

AGROLAB Ambiente S.r.I. a socio unico

Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231 carrara@agrolab.it www.agrolab.it

Your labs. Your service.

Data 04.07.2022 Cod. cliente 200245

RAPPORTO DI PROVA

Ordine 17061 - Collesalvetti (LI)

N. campione: **103822**

	U.M.	Risultato Incertezza	a Tab_BW1 .	Inizio - fine analisi	Metodo
1,2,3,7,8-PECDD	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,7,8-PECDF	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,7,8,9-HXCDD	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,7,8,9-HXCDF	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
2,3,4,6,7,8-HXCDF	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
2,3,4,7,8-PECDF	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
2,3,7,8-TCDD	u) µg/l	<0,0000010		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
2,3,7,8-TCDF	u) µg/l	<0,0000010		04.04.22 - 11.05.22	EPA 1613B 1994(RC)

Idrocarburi

le prove non accreditate sono contrassegnate con il

Solamente

SO/IEC 17025:2018.

CEI

S

Idrocarburi C<10	μg/l	<22		04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8015C 2007
Idrocarburi C<10 come n-esano	μg/l	<24 ×)		04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8015C 2007
Idrocarburi C10-C40	μg/l	<28		04.04.22 - 11.04.22	UNI EN ISO 9377- 2:2002
Idrocarburi C10-C40 come n-esano	μg/l	<31 ×)		04.04.22 - 11.04.22	UNI EN ISO 9377- 2:2002
Idrocarburi totali come n-esano	µg/l	<31 #6)	350	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8015C 2007 + UNI EN ISO 9377- 2:2002

x) I valori singoli che non raggiungono il limite di quantificazione non sono stati considerati.

#6) Il calcolo delle sommatorie è effettuato secondo la convenzione Lower Bound, che considera nullo il contributo di ogni addendo non rilevabile, applicando però la seguente modifica cautelativa: nel caso in cui le concentrazioni degli addendi siano non rilevabili, il risultato non è zero ma viene definito come inferiore al maggiore dei limiti di rilevabilità dei parametri analitici sommati.

Legenda:

Il segno "<" nella colonna del risultato indica che la sostanza in questione non è quantificabile al di sotto del limite di quantificazione indicato.

U.M.: Unità di misura

LOQ: Limite di quantificazione, concentrazione sopra alla quale un analita può essere quantificato.

Il calcolo dell' incertezza analitica composta ed estesa citate nel presente rapporto di prova è basato sulla GUM (Guide to the expression of uncertainty in measurement, BIPM, IEC, IFCC, ISO, IUPAC, IUPAP and OIML, 2008) e sul Nordtest Report (Handbook for calculation of measurement uncertainty in environmental laboratories (TR 537 (ed. 4) 2017). Il fattore di copertura utilizzato è 2 per un livello di probabilità del 95% (intervallo di confidenza).

Il Laboratorio che emette il presente Rapporto di Prova non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati.

Tab_BW1: Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e ss.mm.ii. Concentrazione Soglia di contaminazione nelle acque sotterranee

u) Servizio effettuato da un laboratorio di AGROLAB GROUP

Laboratorio del Gruppo Agrolab

Prova effettuata da

(RC) AGROLAB Sede Altavilla Vicentina, Via Retrone 29/31, 36077 Altavilla Vicentina, accreditato secondo UNI CEI EN ISO/IEC 17025:2018, Numero di accreditamento: 0147L

Metodi di analisi

EPA 1613B 1994

sono contrassegnate

<u>o</u>

Solamente

EN ISO/IEC 17025:2018.

la UNI CEI

Le prove riportate in questo documento sono accreditate secondo

AGROLAB Ambiente S.r.I. a socio unico

AGROLAB GROUP
Your labs. Your service.

Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231 carrara@agrolab.it www.agrolab.it

> Data 04.07.2022 Cod. cliente 200245

RAPPORTO DI PROVA

Ordine 17061 - Collesalvetti (LI)

N. campione: **103822**

I seguenti parametri superano i limiti o si trovano al di fuori dell'intervallo richiesto

Parametro di analisi Valore U.M.

Ferro (Fe) 1170 μ g/l (valore al di sopra del limite richiesto) Manganese (Mn) 1790 μ g/l (valore al di sopra del limite richiesto)

Il Laboratorio che emette il presente Rapporto di Prova non è responsabile delle informazioni di campionamento dichiarate dal Cliente o da personale da lui incaricato (Luogo campionamento, Punto campionamento, Metodo di campionamento e Data Campionamento).

Per il parametro Cianuri liberi è stato preso in considerazione il MDL pertanto non è stata associata la relativa incertezza di misura. Per il parametro PCB (Aroclor 1242, 1248, 1254, 1260) è stato preso in considerazione il MDL pertanto non è stata associata la relativa incertezza di misura .

Data inizio attività in laboratorio: 04.04.2022

Data fine prove: 11.05.2022

I risultati si riferiscono solamente ai campioni analizzati. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti. La riproduzione parziale del Rapporto di Prova deve essere autorizzata per iscritto dal Laboratorio. La regola decisionale applicata alle valutazioni di conformità, in mancanza di richieste diverse da parte del committente, non considera l'incertezza di misura.

Dott.

Mauro Placido Fallica

CHIMICO

N. 1219 Sez.

II Responsabile Chimico
(dr Mauro Placido Fallica)

FINE DEL RAPPORTO DI PROVA

Il Responsabile del Laboratorio (dr.ssa Anna Pagliani)

AMBI Moira Ferrari, Tel. 0585/1818717 Email: Moira.Ferrari@agrolab.it

CRM Ambientale

ISO/IEC

N N

AGROLAB Ambiente S.r.l. a socio unico

Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231 carrara@agrolab.it www.agrolab.it

AMBIENTE S.P.A. Via Frassina, 21 54033 CARRARA (MS)

> 04.07.2022 Data

Cod. cliente 200245

RAPPORTO DI PROVA

Ordine 17061 - Collesalvetti (LI)

N. campione: 103823

Fattura a **200005 AMBIENTE S.P.A.** 90: Collesalvetti (LI) Progetto

Ricevimento campione: 04.04.2022 Data Campionamento: 30.03.2022

Campionato da: Committente (Personale ambiente s.p.a. - Borsacchi)

Descrizione del campione fornita dal Campione di acqua di falda - PZ2

cliente:

contrassegnate con il simbolo " *) '

Metodo di campionamento: APAT CNR IRSA 1030 Man 29 2003 - Prelievo effettuato a cura di

ambiente s.p.a.(*)

Via Berlinguer loc. Stagno, Collesalvetti (LI) -Luogo di campionamento

Pista ciclabile Ivo Mancini

Punto di campionamento Via Berlinguer, Collesalvetti (LI) - PZ2

> Inizio - fine U.M. Risultato Incertezza Tab_BW1 Metodo

Metalli e Specie Metalliche

Arsenico (As)	μg/I	3,02 +/- 0,60	0 10	04.04.22 - 21.04.22 EPA 6020B 2014
Berillio (Be)	μg/l	<0,40	4	04.04.22 - 21.04.22 EPA 6020B 2014
Cadmio (Cd)	μg/l	<0,50	5	04.04.22 - 21.04.22 EPA 6020B 2014
Cobalto (Co)	μg/l	<5,0	50	04.04.22 - 21.04.22 EPA 6020B 2014
Cromo totale (Cr)	μg/l	<5,0	50	04.04.22 - 21.04.22 EPA 6020B 2014
Cromo VI	μg/l	<0,50	5	04.04.22 - EPA 7199 1996 04.04.22
Ferro (Fe)	μg/l	550 +/- 110	0 200	04.04.22 - 21.04.22 EPA 6020B 2014
Manganese (Mn)	μg/l	1180 +/- 240	0 50	04.04.22 - 22.04.22 EPA 6020B 2014
Mercurio (Hg)	μg/l	<0,10	1	04.04.22 - 21.04.22 EPA 6020B 2014
Nichel (Ni)	μg/l	2,48 +/- 0,50	0 20	04.04.22 - 21.04.22 EPA 6020B 2014
Piombo (Pb)	μg/l	<1,0	10	04.04.22 - 21.04.22 EPA 6020B 2014
Rame (Cu)	μg/l	<5,0	1000	04.04.22 - 21.04.22 EPA 6020B 2014
Zinco (Zn)	μg/l	<20	3000	04.04.22 - EPA 6020B 2014

•	1				21.07.22	
Berillio (Be)	μg/l	<0,40		4	04.04.22 - 21.04.22	EPA 6020B 2014
	μg/l	<0,50		5	04.04.22 - 21.04.22	EPA 6020B 2014
Cadmio (Cd) Cobalto (Co) Cromo totale (Cr) Cromo VI	μg/l	<5,0		50	04.04.22 - 21.04.22	EPA 6020B 2014
Cromo totale (Cr)	μg/l	<5,0		50	04.04.22 - 21.04.22	EPA 6020B 2014
Cromo VI	μg/l	<0,50		5	04.04.22 - 04.04.22	EPA 7199 1996
Ferro (Fe) Manganese (Mn) Mercurio (Hg)	μg/l	550	+/- 110	200	04.04.22 - 21.04.22	EPA 6020B 2014
Manganese (Mn)	μg/l	1180	+/- 240	50	04.04.22 - 22.04.22	EPA 6020B 2014
Mercurio (Hg)	μg/l	<0,10		1	04.04.22 - 21.04.22	EPA 6020B 2014
Nichel (Ni) Piombo (Pb) Rame (Cu) Zinco (Zn)	μg/l	2,48	+/- 0,50	20	04.04.22 - 21.04.22	EPA 6020B 2014
Piombo (Pb)	μg/l	<1,0		10	04.04.22 - 21.04.22	EPA 6020B 2014
Rame (Cu)	μg/l	<5,0		1000	04.04.22 - 21.04.22	EPA 6020B 2014
Zinco (Zn)	μg/l	<20		3000	04.04.22 - 21.04.22	EPA 6020B 2014
Costituenti Inorganici I	Non Metallici - Anior	าi				
Costituenti Inorganici I Cianuri liberi	μg/l	<10		50	04.04.22 - 04.04.22	M.U. 2251:08 p.to 8.2.1
Fluoruri	μg/l	411	+/- 45	1500	04.04.22 - 05.04.22	APAT CNR IRSA 4020 Man 29 2003
Fluoruri Costituenti Organici - C Benzene	Composti Aromatici					
Benzene	μg/l	0,53	+/- 0,16	1	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
		m^{μ}				
						pagina 1 di 5

AGROLAB Ambiente S.r.l. a socio unico Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231 carrara@agrolab.it www.agrolab.it

Data 04.07.2022 Cod. cliente 200245

	U.M.	Risultato	Incertezza	Tab_BW1	•	Inizio - fine analisi	Metodo
Etilbenzene	µg/l	<0,010		50		04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
m+p-Xilene	μg/l	0,53	+/- 0,16	10		04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
Stirene	μg/l	<0,010		25		04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
Toluene	μg/l	0,069	+/- 0,021	15		04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018

Costituenti Organici - Compo	sti Alogena	ati				
Bromodiclorometano	μg/l	<0,010		0,17	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
cis-1,2-Dicloroetilene	µg/l	0,095	+/- 0,028		04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
Clorometano	μg/l	<0,050		1,5	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
Cloruro di vinile	μg/l	0,0265	+/- 0,0080	0,5	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
Dibromoclorometano	μg/l	<0,010		0,13	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
Esaclorobutadiene	μg/l	<0,010		0,15	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
Sommatoria organoalogenati	μg/l	0,110 #6)	+/- 0,033	10	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
Tetracloroetilene (PCE)	μg/l	<0,050		1,1	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
trans-1,2-Dicloroetilene	μg/l	0,0124	+/- 0,0037		04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
Tribromometano (Bromoformio)	μg/l	<0,0050		0,3	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
Tricloroetilene	μg/l	0,0209	+/- 0,0063	1,5	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
Triclorometano (cloroformio)	μg/l	<0,010		0,15	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
1,1-Dicloroetano	μg/l	<0,010		810	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
1,1-Dicloroetilene	μg/l	<0,0050		0,05	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
1,1,2-Tricloroetano	μg/l	<0,010		0,2	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
1,1,2,2-Tetracloroetano	μg/l	<0,0050		0,05	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
1,2-Dibromoetano	μg/l	<0,00050		0,001	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
1,2-Dicloroetano	μg/l	0,063	+/- 0,019	3	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
1,2-Dicloroetilene	μg/l	0,107 #6)	+/- 0,032	60	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
1,2-Dicloropropano	μg/l	<0,0050		0,15	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
1,2,3-Tricloropropano	μg/l	<0,00050		0,001	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018

RAPPORTO DI PROVA					Cod. cliente	200
Ordine N. campione:		061 - Collesalvetti (l 3823	_l)			
	U.M.	Risultato	Incertezza	Tab_BW1	Inizio - fine . analisi	Metodo
Etilbenzene	μg/l	<0,010		50	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
m+p-Xilene	μg/l	0,53	+/- 0,16	10	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Stirene	μg/l	<0,010		25	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Toluene	μg/l	0,069	+/- 0,021	15	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Costituenti Organici - Compo	sti Alogenat	ti				<u> LI A 0200D 2010</u>
Bromodiclorometano	μg/l	<0,010		0,17	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
cis-1,2-Dicloroetilene	μg/l	0,095	+/- 0,028		04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Clorometano	μg/l	<0,050		1,5	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Cloruro di vinile	μg/l	0,0265	+/- 0,0080	0,5	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Dibromoclorometano	μg/l	<0,010		0,13	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Esaclorobutadiene	μg/l	<0,010		0,15	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Sommatoria organoalogenati	μg/l	0,110 #6)	+/- 0,033	10	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Tetracloroetilene (PCE)	μg/l	<0,050		1,1	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
trans-1,2-Dicloroetilene	μg/l	0,0124	+/- 0,0037		04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Tribromometano (Bromoformio)	μg/l	<0,0050		0,3	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Tricloroetilene	μg/l	0,0209	+/- 0,0063	1,5	04.04.22 -	EPA 5030C 2003 EPA 8260D 2018
Triclorometano (cloroformio)	μg/l	<0,010		0,15	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,1-Dicloroetano	μg/l	<0,010		810	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,1-Dicloroetilene	μg/l	<0,0050		0,05	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,1,2-Tricloroetano	μg/l	<0,010		0,2	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,1,2,2-Tetracloroetano	μg/l	<0,0050		0,05	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,2-Dibromoetano	μg/l	<0,00050		0,001	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,2-Dicloroetano	μg/l	0,063	+/- 0,019	3	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,2-Dicloroetilene	μg/l	0,107 #6)	+/- 0,032	60	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,2-Dicloropropano	μg/l	<0,0050		0,15	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,2,3-Tricloropropano	μg/l	<0,00050		0,001	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Costituenti Organici - Idrocar	buri Policicl	lici Aromatici				LI.V 0500D 5016
Benzo(a)antracene	μg/l	0,0242	+/- 0,0072	0,1	04.04.22 - 11.04.22	EPA 3510C 1996 EPA 8270E 2018
Benzo(a)pirene	μg/l	0,00251	+/- 0,00075	0,01	04.04.22 - 11.04.22	EPA 3510C 1996 EPA 8270E 2018
Benzo(b)fluorantene	μg/l	<0,00056		0,1	04.04.22 - 11.04.22	EPA 3510C 1996 EPA 8270E 2018
Benzo(g,h,i)perilene	μg/l	0,00117	+/- 0,00035	0,01	04.04.22 - 11.04.22	EPA 3510C 1996 EPA 8270E 2018
Benzo(k)fluorantene	μg/l	<0,00056		0,05	04.04.22 - 11.04.22	EPA 3510C 1996 EPA 8270E 2018
Crisene	μg/l	0,048	+/- 0,017	5	04.04.22 - 11.04.22	EPA 3510C 1996 EPA 8270E 2018

Ш

SE

AGROLAB Ambiente S.r.I. a socio unico

GROUP

Your labs. Your service.

Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231 carrara@agrolab.it www.agrolab.it

> Data 04.07.2022 Cod. cliente 200245

09.04.22

					Inizio - fine	Inizio - fine	
	U.M.	Risultato	Incertezza	Tab_BW1	. analisi	Metodo	
Dibenzo(a,h)antracene	μg/l	<0,00056		0,01	04.04.22 - 11.04.22	EPA 3510C 1996 + EPA 8270E 2018	
Indeno(1,2,3-c,d)pirene	μg/l	0,00166	+/- 0,00050	0,1	04.04.22 - 11.04.22	EPA 3510C 1996 + EPA 8270E 2018	
Pirene	μg/l	0,0305		50	04.04.22 - 11.04.22	EPA 3510C 1996 + EPA 8270E 2018	
Sommatoria IPA 31,32,33,36	μg/l	0,00283 #6)	+/- 0,00085	0,1	04.04.22 - 11.04.22	EPA 3510C 1996 + EPA 8270E 2018	
Costituenti Organici - Pestic	idi						
Aldrin	μg/l	<0,00056		0,03	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018	
alfa-esaclorocicloesano	μg/l	<0,00056		0,1	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018	
Atrazina	µg/l	<0,00056		0,3	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018	
Beta-esaclorocicloesano	µg/l	<0,00056	·	0,1	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018	

DARRONTO DI BROVA					Coa. onorito	20021
RAPPORTO DI PROVA Ordine	170	164 Collegelyetti (l	1.10			
		61 - Collesalvetti (l	∟ I)			
N. campione:	103	823				
5	U.M.	Disultata	l	T-1- D\\\/4	Inizio - fine . analisi	
	U.IVI.	Risultato	Incertezza	Tab_BVVT		Metodo
N. campione: Dibenzo(a,h)antracene Indeno(1,2,3-c,d)pirene Pirene Sommatoria IPA 31,32,33,36 Costituenti Organici - Pestic Aldrin alfa-esaclorocicloesano Atrazina Beta-esaclorocicloesano	μg/l	<0,00056		0,01	04.04.22 - 11.04.22	EPA 3510C 1996 + EPA 8270E 2018
Indeno(1,2,3-c,d)pirene	μg/l	0,00166	+/- 0,00050	0,1	04.04.22 - 11.04.22	EPA 3510C 1996 + EPA 8270E 2018
Pirene	μg/l	0,0305	+/- 0,0091	50	04.04.22 - 11.04.22	EPA 3510C 1996 + EPA 8270E 2018
Sommatoria IPA 31,32,33,36	μg/l	0,00283 #6)	+/- 0,00085	0,1	04.04.22 - 11.04.22	EPA 3510C 1996 + EPA 8270E 2018
Costituenti Organici - Pestic	idi					
Aldrin	µg/l	<0,00056		0,03	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
alfa-esaclorocicloesano	µg/l	<0,00056		0,1	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
Atrazina	µg/l	<0,00056		0,3	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
Beta-esaclorocicloesano	µg/l	<0,00056		0,1	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
Clordano	µg/l	<0,00056 #6)		0,1	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
DDD, DDT, DDE	µg/l	0,055 #6)		0,1	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
Dieldrin	μg/l	<0,00056		0,03	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
Endrin	μg/l	<0,00056		0,1	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
Sommatoria Fitofarmaci	μg/l	0,055 #6)		0,5	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
2,4-DDD	μg/l	<0,00056			04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
2,4-DDE	μg/l	<0,00056			04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
Endrin Sommatoria Fitofarmaci 2,4-DDD 2,4-DDE 2,4-DDT	ua/l	0.055	+/- 0.022		04.04.22 -	EPA 3510C 1996 +

2,4-DDE <0,00056 μg/l 09.04.22 EPA 8270E 2018 2,4-DDT +/- 0,022 04.04.22 -EPA 3510C 1996 + 0,055 μg/l 09.04.22 EPA 8270E 2018 04.04.22 -09.04.22 EPA 3510C 1996 + 4.4-DDD <0,00056 μg/l EPA 8270E 2018 la UNI (4,4-DDE 04.04.22 -09.04.22 <0,00056 EPA 3510C 1996 + μg/l EPA 8270E 2018 04.04.22 -4.4-DDT <0.00056 EPA 3510C 1996 + μg/l

מ	PCB (Aroclor 1242, 1248, 1254, 1260)	ua/l	<0.00022	0.01	04.04.22 - EPA 3510C 1996 +
,, I		I - 3 - 1	,	,,,,,	09.04.22 EPA 8270E 2018

п	1	CCI	nn	\sim	_	110	nnı
_			116	-	Гι		ani

7,7-001	ру/і	<0,00030		09.04.22	EPA 8270E 2018
Costituenti Organici - Polici	orobifenilet	eri			
PCB (Aroclor 1242, 1248, 1254, 1260)	μg/l	<0,00022	0,01	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
Diossine e Furani					
CCMS 1988)	u) µg/l	<0,00000025 #6)	0,000004	04.04.22 - 11.05.22	EPA 1613B 1994(RC)
OCDE	u) µg/l	<0,0000010		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
	u) µg/l	<0,0000010		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,4,6,7,8-HPCDF	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,4,7,8-HXCDD	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,4,7,8-HXCDF	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDD	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,6,7,8-HXCDF	^{u)} µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)

pagina 3 di 5

EN ISO/IEC 17025:2018.

la UNI CEI

Le prove riportate in questo documento

AGROLAB Ambiente S.r.l. a socio unico

GROLAR **GROUP** Your labs. Your service.

Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231 carrara@agrolab.it www.agrolab.it

> Data 04.07.2022 Cod. cliente 200245

RAPPORTO DI PROVA

17061 - Collesalvetti (LI) Ordine

103823 N. campione:

				Inizio - fine	
	U.M.	Risultato Incertezza	Tab_BW1	. analisi	Metodo
1,2,3,7,8-PECDD	^{u)} μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,7,8-PECDF	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,7,8,9-HXCDD	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,7,8,9-HXCDF	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
2,3,4,6,7,8-HXCDF	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
2,3,4,7,8-PECDF	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
2,3,7,8-TCDD	u) µg/l	<0,0000010		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
2,3,7,8-TCDF	u) µg/l	<0,0000010		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
Idrocarburi	·	·			

Solamente le prove non accreditate sono contrassegnate con il simbolo

Idrocarburi						
Idrocarburi alifatici C13-C18	μg/l	130			04.04.22 - 14.05.22	MADEP EPH 2004
Idrocarburi alifatici C19-C36	μg/l	550			04.04.22 - 14.05.22	MADEP EPH 2004
Idrocarburi alifatici C9-C12	μg/l	200			04.04.22 - 09.05.22	MADEP VPH 2017
Idrocarburi aromatici C11-C22	μg/l	0,67			04.04.22 - 18.05.22	MADEP EPH 2004
Idrocarburi aromatici C9-C10	μg/l	<10			04.04.22 - 09.05.22	MADEP VPH 2017
Idrocarburi C<10	μg/l	103	+/- 31		04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8015C 2007
Idrocarburi C<10 come n-esano	µg/l	113	+/- 34		04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8015C 2007
Idrocarburi C10-C40	µg/l	900	+/- 250		04.04.22 - 11.04.22	UNI EN ISO 9377- 2:2002
Idrocarburi C10-C40 come n-esano	µg/l	990	+/- 280		04.04.22 - 11.04.22	UNI EN ISO 9377- 2:2002
Idrocarburi C5-C8	μg/l	63			04.04.22 - 09.05.22	MADEP VPH 2017
Idrocarburi totali come n-esano	µg/l	1100 #6)	+/- 330	350	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8015C 2007 + UNI EN ISO 9377- 2:2002

#6) Il calcolo delle sommatorie è effettuato secondo la convenzione Lower Bound, che considera nullo il contributo di ogni addendo non rilevabile, applicando però la seguente modifica cautelativa: nel caso in cui le concentrazioni degli addendi siano non rilevabili, il risultato non è zero ma viene definito come inferiore al maggiore dei limiti di rilevabilità dei parametri analitici sommati. Legenda:

Il segno "<" nella colonna del risultato indica che la sostanza in questione non è quantificabile al di sotto del limite di quantificazione indicato.

U.M.: Unità di misura

LOQ: Limite di quantificazione, concentrazione sopra alla quale un analita può essere quantificato.

Il calcolo dell' incertezza analitica composta ed estesa citate nel presente rapporto di prova è basato sulla GUM (Guide to the expression of uncertainty in measurement, BIPM, IEC, IFCC, ISO, IUPAC, IUPAP and OIML, 2008) e sul Nordtest Report (Handbook for calculation of measurement uncertainty in environmental laboratories (TR 537 (ed. 4) 2017). Il fattore di copertura utilizzato è 2 per un livello di probabilità del 95% (intervallo di confidenza).

Il Laboratorio che emette il presente Rapporto di Prova non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati.

Tab_BW1: Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e ss.mm.ii. Concentrazione Soglia di contaminazione nelle acque sotterranee

u) Servizio effettuato da un laboratorio di AGROLAB GROUP

Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231 carrara@agrolab.it www.agrolab.it

Data 04.07.2022 Cod. cliente 200245

RAPPORTO DI PROVA

Ordine 17061 - Collesalvetti (LI)

N. campione: **103823**

Laboratorio del Gruppo Agrolab

Prova effettuata da

le prove non accreditate sono contrassegnate

17025:2018.

SO/IEC

SE

Le prove riportate in questo documento sono accreditate secondo la UNI

(RC) AGROLAB Sede Altavilla Vicentina, Via Retrone 29/31, 36077 Altavilla Vicentina, accreditato secondo UNI CEI EN ISO/IEC 17025:2018, Numero di accreditamento: 0147L

Metodi di analisi EPA 1613B 1994

I seguenti parametri superano i limiti o si trovano al di fuori dell'intervallo richiesto

Parametro di analisi Valore U.M.

Ferro (Fe) $550~\mu g/l$ (valore al di sopra del limite richiesto) Manganese (Mn) $1180~\mu g/l$ (valore al di sopra del limite richiesto) Idrocarburi totali come n-esano $1100~\mu g/l$ (valore al di sopra del limite richiesto)

Il Laboratorio che emette il presente Rapporto di Prova non è responsabile delle informazioni di campionamento dichiarate dal Cliente o da personale da lui incaricato (Luogo campionamento, Punto campionamento, Metodo di campionamento e Data Campionamento).

Per il parametro Cianuri liberi è stato preso in considerazione il MDL pertanto non è stata associata la relativa incertezza di misura. Per il parametro PCB (Aroclor 1242, 1248, 1254, 1260) è stato preso in considerazione il MDL pertanto non è stata associata la relativa incertezza di misura .

Data inizio attività in laboratorio: 04.04.2022

Data fine prove: 18.05.2022

I risultati si riferiscono solamente ai campioni analizzati. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti. La riproduzione parziale del Rapporto di Prova deve essere autorizzata per iscritto dal Laboratorio. La regola decisionale applicata alle valutazioni di conformità, in mancanza di richieste diverse da parte del committente, non considera l'incertezza di misura.

Il Responsabile del Laboratorio (dr. ssa Anna Pagliani)

AMBI Moira Ferrari, Tel. 0585/1818717 Email: Moira.Ferrari@agrolab.it CRM Ambientale

ISO/IEC

N N

AGROLAB Ambiente S.r.l. a socio unico

Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231 carrara@agrolab.it www.agrolab.it

AMBIENTE S.P.A. Via Frassina, 21 54033 CARRARA (MS)

> 04.07.2022 Data

Cod. cliente 200245

RAPPORTO DI PROVA

Ordine 17061 - Collesalvetti (LI)

N. campione: 103824

Fattura a **200005 AMBIENTE S.P.A.** Progetto 90: Collesalvetti (LI)

Ricevimento campione: 04.04.2022 30.03.2022 Data Campionamento:

Campionato da: Committente (Personale ambiente s.p.a. - Borsacchi)

Descrizione del campione fornita dal Campione di acqua di falda - PZ3

cliente:

contrassegnate con il simbolo " *) '

sono

Metodo di campionamento: APAT CNR IRSA 1030 Man 29 2003 - Prelievo effettuato a cura di

ambiente s.p.a.(*)

Via Berlinguer loc. Stagno, Collesalvetti (LI) -Luogo di campionamento

Pista ciclabile Ivo Mancini

Punto di campionamento Via Berlinguer, Collesalvetti (LI) - PZ3

> Inizio - fine U.M. Risultato Incertezza Tab_BW1 Metodo

Metalli e Specie Metalliche

Arsenico (As)	μg/l	1,03	+/- 0,21	10	04.04.22 - 21.04.22 EPA 6020B 2014
Berillio (Be)	μg/l	<0,40		4	04.04.22 - 21.04.22 EPA 6020B 2014
Cadmio (Cd)	μg/l	<0,50		5	04.04.22 - 21.04.22 EPA 6020B 2014
Cobalto (Co)	μg/l	<5,0		50	04.04.22 - 21.04.22 EPA 6020B 2014
Cromo totale (Cr)	μg/l	<5,0		50	04.04.22 - 21.04.22 EPA 6020B 2014
Cromo VI	μg/l	<0,50		5	04.04.22 - 04.04.22 EPA 7199 1996
Ferro (Fe)	μg/l	140	+/- 28	200	04.04.22 - 21.04.22 EPA 6020B 2014
Manganese (Mn)	μg/l	610	+/- 120	50	04.04.22 - 22.04.22 EPA 6020B 2014
Mercurio (Hg)	μg/l	<0,10		1	04.04.22 - 21.04.22 EPA 6020B 2014
Nichel (Ni)	µg/l	<0,400		20	04.04.22 - 21.04.22 EPA 6020B 2014
Piombo (Pb)	μg/l	<1,0		10	04.04.22 - 21.04.22 EPA 6020B 2014
Rame (Cu)	μg/l	<5,0		1000	04.04.22 - 21.04.22 EPA 6020B 2014
Zinco (Zn)	μg/l	<20		3000	04.04.22 - 21.04.22 EPA 6020B 2014

					21.07.22	
Berillio (Be)	μg/l	<0,40		4	04.04.22 - 21.04.22	EPA 6020B 2014
	μg/l	<0,50		5	04.04.22 - 21.04.22	EPA 6020B 2014
Cadmio (Cd) Cobalto (Co) Cromo totale (Cr) Cromo VI	μg/l	<5,0		50	04.04.22 - 21.04.22	EPA 6020B 2014
Cromo totale (Cr)	μg/l	<5,0		50	04.04.22 - 21.04.22	EPA 6020B 2014
Cromo VI	μg/l	<0,50		5	04.04.22 - 04.04.22	EPA 7199 1996
	μg/l	140	+/- 28	200	04.04.22 - 21.04.22	EPA 6020B 2014
Manganese (Mn)	μg/l	610	+/- 120	50	04.04.22 - 22.04.22	EPA 6020B 2014
Ferro (Fe) Manganese (Mn) Mercurio (Hg)	μg/l	<0,10		1	04.04.22 - 21.04.22	EPA 6020B 2014
	μg/l	<0,400		20	04.04.22 - 21.04.22	EPA 6020B 2014
Nichel (Ni) Piombo (Pb) Rame (Cu) Zinco (Zn)	μg/l	<1,0		10	04.04.22 - 21.04.22	EPA 6020B 2014
Rame (Cu)	μg/l	<5,0		1000	04.04.22 - 21.04.22	EPA 6020B 2014
Zinco (Zn)	μg/l	<20		3000	04.04.22 - 21.04.22	EPA 6020B 2014
	Non Metallici - Anic	oni			·	
Costituenti Inorganici I	μg/l	<10		50	04.04.22 - 04.04.22	M.U. 2251:08 p.to 8.2.1
	μg/l	2370	+/- 260	1500	04.04.22 - 05.04.22	APAT CNR IRSA 4020 Man 29 2003
Fluoruri Costituenti Organici - (Benzene	Composti Aromatic	i .				
Benzene	μg/l	<0,010		1	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
ָ ע						pagina 1 di 5

-	Benzene	μg/l	<0,010	1	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018

Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231 carrara@agrolab.it www.agrolab.it

Your labs. Your service.

Data 04.07.2022

Cod. cliente

200245

RAPPORTO DI PROVA

3					Inizio - fine	
2		U.M.	Risultato Incertezza	Tab_BW1 .	analisi	Metodo
6000	Etilbenzene	μg/l	<0,010	50	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
Š	m+p-Xilene	µg/l	<0,020	10	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
2	Stirene	μg/l	<0,010	25	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
	Toluene	μg/l	<0,050	15	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018

. 5.0.5.1.5	Р9/-	40,000	.0	11.04.22 EPA 8260D 2018
Costituenti Organici - Compo	sti Alogenati	į		
Bromodiclorometano	μg/l	<0,010	0,17	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
cis-1,2-Dicloroetilene	μg/l	<0,010		04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Clorometano	μg/l	<0,050	1,5	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Cloruro di vinile	μg/l	<0,010	0,5	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Dibromoclorometano	μg/l	<0,010	0,13	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Esaclorobutadiene	μg/l	<0,010	0,15	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Sommatoria organoalogenati	μg/l	<0,050 #6)	10	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Tetracloroetilene (PCE)	μg/l	<0,050	1,1	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
trans-1,2-Dicloroetilene	μg/l	<0,010		04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Tribromometano (Bromoformio)	μg/l	<0,0050	0,3	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Tricloroetilene	μg/l	<0,010	1,5	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Triclorometano (cloroformio)	μg/l	<0,010	0,15	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,1-Dicloroetano	μg/l	<0,010	810	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,1-Dicloroetilene	μg/l	<0,0050	0,05	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,1,2-Tricloroetano	μg/l	<0,010	0,2	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,1,2,2-Tetracloroetano	μg/l	<0,0050	0,05	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,2-Dibromoetano	μg/l	<0,00050	0,001	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,2-Dicloroetano	μg/l	<0,0050	3	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,2-Dicloroetilene	μg/l	<0,01 #6)	60	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,2-Dicloropropano	μg/l	<0,0050	0,15	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,2,3-Tricloropropano	μg/l	<0,00050	0,001	04.04.22 - 11.04.22 EPA 5030C 2003 + EPA 8260D 2018

RAPPORTO DI PROVA				Cod. cliente	200
Ordine N. campione:		061 - Collesalvetti (LI) 3824			
	U.M.	Risultato Incertez	za Tab BW1	Inizio - fine . analisi	Metodo
Etilbenzene	μg/l	<0,010	50	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
m+p-Xilene	μg/l	<0,020	10	04.04.22 -	EPA 5030C 2003 EPA 8260D 2018
Stirene	μg/l	<0,010	25	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Toluene	μg/l	<0,050	15	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Costituenti Organici - Compo	sti Alogena	 ti		11101122	EPA 6200D 2016
Bromodiclorometano	μg/l	<0,010	0,17	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
cis-1,2-Dicloroetilene	μg/l	<0,010		04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Clorometano	μg/l	<0,050	1,5	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Cloruro di vinile	μg/l	<0,010	0,5	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Dibromoclorometano	μg/l	<0,010	0,13	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Esaclorobutadiene	μg/l	<0,010	0,15	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Sommatoria organoalogenati	μg/l	<0,050 #6)	10	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Tetracloroetilene (PCE)	μg/l	<0,050	1,1	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
trans-1,2-Dicloroetilene	μg/l	<0,010		04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Tribromometano (Bromoformio)	μg/l	<0,0050	0,3	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Tricloroetilene	μg/l	<0,010	1,5	04.04.22 -	EPA 5030C 2003 EPA 8260D 2018
Triclorometano (cloroformio)	μg/l	<0,010	0,15	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,1-Dicloroetano	μg/l	<0,010	810	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,1-Dicloroetilene	μg/l	<0,0050	0,05	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,1,2-Tricloroetano	μg/l	<0,010	0,2	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,1,2,2-Tetracloroetano	μg/l	<0,0050	0,05	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,2-Dibromoetano	μg/l	<0,00050	0,001	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,2-Dicloroetano	μg/l	<0,0050	3	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,2-Dicloroetilene	μg/l	<0,01 #6)	60	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,2-Dicloropropano	μg/l	<0,0050	0,15	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,2,3-Tricloropropano	μg/l	<0,00050	0,001	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Costituenti Organici - Idrocar	buri Policic	lici Aromatici			LI A 0200D 2010
Benzo(a)antracene	μg/l	<0,00056	0,1	04.04.22 - 11.04.22	EPA 3510C 1996 EPA 8270E 2018
Benzo(a)pirene	μg/l	0,00035 +/- 0,000	011 0,01	04.04.22 - 11.04.22	EPA 3510C 1996 EPA 8270E 2018
Benzo(b)fluorantene	μg/l	0,00076 +/- 0,000	023 0,1	04.04.22 - 11.04.22	EPA 3510C 1996 EPA 8270E 2018
Benzo(g,h,i)perilene	μg/l	<0,00014	0,01	04.04.22 - 11.04.22	EPA 3510C 1996 EPA 8270E 2018
Benzo(k)fluorantene	μg/l	<0,00056	0,05	04.04.22 - 11.04.22	EPA 3510C 1996 EPA 8270E 2018
Crisene	μg/l	<0,00056	5	04.04.22 - 11.04.22	EPA 3510C 1996 EPA 8270E 2018

ISO/IEC 17025:2018. Solamente le prove non accreditate sono contrassegnate con il simbolo

AGROLAB Ambiente S.r.I. a socio unico

AGROLAR **GROUP**

Your labs. Your service.

Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231 carrara@agrolab.it www.agrolab.it

> Data 04.07.2022

> Cod. cliente 200245

RAPPORTO DI PROVA

17061 - Collesalvetti (LI) Ordine

μg/l

μg/l

μg/l

μg/l

μg/l

103824 N. campione:

•	U.M.	Risultato In	certezza	Tab_BW1	Inizio - fine . analisi	Metodo
Dibenzo(a,h)antracene	μg/l	<0,00056		0,01	04.04.22 - 11.04.22	EPA 3510C 1996 + EPA 8270E 2018
Indeno(1,2,3-c,d)pirene	μg/l	<0,00056		0,1	04.04.22 - 11.04.22	EPA 3510C 1996 + EPA 8270E 2018
Pirene	μg/l	0,00131 +	/- 0,00039	50	04.04.22 - 11.04.22	EPA 3510C 1996 + EPA 8270E 2018
Sommatoria IPA 31,32,33,36	μg/l	0,00076 #6) +	/- 0,00023	0,1	04.04.22 - 11.04.22	EPA 3510C 1996 + EPA 8270E 2018
Costituenti Organici - Pestic	idi					
Aldrin	μg/l	<0,00056		0,03	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
alfa-esaclorocicloesano	μg/l	<0,00056		0,1	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
Atrazina	μg/l	<0,00056		0,3	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
Beta-esaclorocicloesano	μg/l	<0,00056		0,1	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
Clordano	μg/l	<0,00056 #6)		0,1	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
DDD, DDT, DDE	μg/l	<0,00056 #6)		0,1	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
Dieldrin	μg/l	<0,00056		0,03	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
Endrin	μg/l	<0,00056	_	0,1	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
Sommatoria Fitofarmaci	μg/l	<0,00056 #6)		0,5	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
2,4-DDD	μg/l	<0,00056			04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018

<0,00056

<0,00056

<0,00056

<0,00056

<0.00056

Dioss		
-:000	 •	ai ai ii

2,4-DDE

2,4-DDT

4.4-DDD

4,4-DDE

4.4-DDT

Ш

SE

Z

<u>a</u>

5	μ9/1	<0,00030		09.04.22	EPA 8270E 2018
Costituenti Organici - Polic	lorobifenilet	eri			
PCB (Aroclor 1242, 1248, 1254, 1260)	μg/l	<0,00022	0,01	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
Diossine e Furani					
CCMS 1988)	^{u)} μg/l	<0,00000025 #6)	0,000004	04.04.22 - 11.05.22	EPA 1613B 1994(RC)
OCDE	^{u)} μg/l	<0,0000010		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
	^{u)} μg/l	<0,000010		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF	^{u)} µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,4,6,7,8-HPCDF	^{u)} μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF	^{u)} μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,4,7,8-HXCDF	^{u)} μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDD	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,6,7,8-HXCDF	^{u)} μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)

EPA 8270E 2018

EPA 8270E 2018

EPA 8270E 2018

EPA 3510C 1996 +

EPA 3510C 1996 +

EPA 3510C 1996 +

EPA 3510C 1996 + EPA 8270E 2018

EPA 3510C 1996 +

04.04.22

09.04.22

04.04.22 -

04.04.22 -09.04.22

04.04.22 -09.04.22

04.04.22

09.04.22

09.04.22

Le prove riportate in questo documento

AGROLAB Ambiente S.r.I. a socio unico

GROLAR **GROUP** Your labs. Your service.

Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231 carrara@agrolab.it www.agrolab.it

> Data 04.07.2022 200245

Cod. cliente

RAPPORTO DI PROVA

17061 - Collesalvetti (LI) Ordine 103824 N. campione:

U.M.	Risultato Incerteza	za Tab_BW1	. analisi	Metodo
u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
u) µg/l	<0,0000010		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
u) µg/l	<0,0000010		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
	n) ha\l	u) μg/l <0,00000050	u) μg/l <0,00000050	u) µg/l <0,00000050

Idrocarburi

le prove non accreditate sono contrassegnate con il

Solamente

SO/IEC 17025:2018.

CEI

S

Idrocarburi C<10	μg/l	<22		04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8015C 2007
Idrocarburi C<10 come n-esano	μg/l	<24 ×)		04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8015C 2007
Idrocarburi C10-C40	μg/l	<28		04.04.22 - 11.04.22	UNI EN ISO 9377- 2:2002
Idrocarburi C10-C40 come n-esano	μg/l	<31 ×)		04.04.22 - 11.04.22	UNI EN ISO 9377- 2:2002
Idrocarburi totali come n-esano	µg/l	<31 #6)	350	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8015C 2007 + UNI EN ISO 9377- 2:2002

x) I valori singoli che non raggiungono il limite di quantificazione non sono stati considerati.

#6) Il calcolo delle sommatorie è effettuato secondo la convenzione Lower Bound, che considera nullo il contributo di ogni addendo non rilevabile, applicando però la seguente modifica cautelativa: nel caso in cui le concentrazioni degli addendi siano non rilevabili, il risultato non è zero ma viene definito come inferiore al maggiore dei limiti di rilevabilità dei parametri analitici sommati. Legenda:

Il segno "<" nella colonna del risultato indica che la sostanza in questione non è quantificabile al di sotto del limite di quantificazione indicato.

U.M.: Unità di misura

LOQ: Limite di quantificazione, concentrazione sopra alla quale un analita può essere quantificato.

Il calcolo dell' incertezza analitica composta ed estesa citate nel presente rapporto di prova è basato sulla GUM (Guide to the expression of uncertainty in measurement, BIPM, IEC, IFCC, ISO, IUPAC, IUPAP and OIML, 2008) e sul Nordtest Report (Handbook for calculation of measurement uncertainty in environmental laboratories (TR 537 (ed. 4) 2017). Il fattore di copertura utilizzato è 2 per un livello di probabilità del 95% (intervallo di confidenza).

Il Laboratorio che emette il presente Rapporto di Prova non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati.

Tab_BW1: Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e ss.mm.ii. Concentrazione Soglia di contaminazione nelle acque sotterranee

u) Servizio effettuato da un laboratorio di AGROLAB GROUP

Laboratorio del Gruppo Agrolab

Prova effettuata da

(RC) AGROLAB Sede Altavilla Vicentina, Via Retrone 29/31, 36077 Altavilla Vicentina, accreditato secondo UNI CEI EN ISO/IEC 17025:2018, Numero di accreditamento: 0147L

Metodi di analisi

EPA 1613B 1994

sono contrassegnate

<u>o</u>

Solamente

EN ISO/IEC 17025:2018.

la UNI CEI

Le prove riportate in questo documento sono accreditate secondo

AGROLAB Ambiente S.r.I. a socio unico

Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231 carrara@agrolab.it www.agrolab.it

> Data 04.07.2022 Cod. cliente 200245

RAPPORTO DI PROVA

Ordine 17061 - Collesalvetti (LI)

N. campione: **103824**

I seguenti parametri superano i limiti o si trovano al di fuori dell'intervallo richiesto

Parametro di analisi Valore U.M.

Manganese (Mn)
610 µg/l (valore al di sopra del limite richiesto)
Fluoruri
2370 µg/l (valore al di sopra del limite richiesto)

Il Laboratorio che emette il presente Rapporto di Prova non è responsabile delle informazioni di campionamento dichiarate dal Cliente o da personale da lui incaricato (Luogo campionamento, Punto campionamento, Metodo di campionamento e Data Campionamento).

Per il parametro Cianuri liberi è stato preso in considerazione il MDL pertanto non è stata associata la relativa incertezza di misura. Per il parametro PCB (Aroclor 1242, 1248, 1254, 1260) è stato preso in considerazione il MDL pertanto non è stata associata la relativa incertezza di misura .

Data inizio attività in laboratorio: 04.04.2022

Data fine prove: 11.05.2022

I risultati si riferiscono solamente ai campioni analizzati. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti. La riproduzione parziale del Rapporto di Prova deve essere autorizzata per iscritto dal Laboratorio. La regola decisionale applicata alle valutazioni di conformità, in mancanza di richieste diverse da parte del committente, non considera l'incertezza di misura.

Dott.

Dott.

Mauro Piacido Fallica

CHIMICO

N. 1219 Sez. A

II Responsabile Chimico
(dr Mauro Placido Fallica)

FINE DEL RAPPORTO DI PROVA

Il Responsabile del Laboratorio (dr.ssa Anna Pagliani)

AMBI Moira Ferrari, Tel. 0585/1818717 Email: Moira.Ferrari@agrolab.it

CRM Ambientale

EN ISO/IEC

AGROLAB Ambiente S.r.l. a socio unico

Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231 carrara@agrolab.it www.agrolab.it

AMBIENTE S.P.A. Via Frassina, 21 54033 CARRARA (MS)

> 04.07.2022 Data

> > Inizio - fine

Cod. cliente 200245

RAPPORTO DI PROVA

Ordine 17061 - Collesalvetti (LI)

N. campione: 103825

Fattura a **200005 AMBIENTE S.P.A.** Progetto 90: Collesalvetti (LI)

Ricevimento campione: 04.04.2022 30.03.2022 Data Campionamento:

Campionato da: Committente (Personale ambiente s.p.a. - Borsacchi)

Descrizione del campione fornita dal Campione di acqua di falda - PZ4

cliente:

contrassegnate con il simbolo " *) "

sono

Metodo di campionamento: APAT CNR IRSA 1030 Man 29 2003 - Prelievo effettuato a cura di

ambiente s.p.a.(*)

Via Berlinguer loc. Stagno, Collesalvetti (LI) -Luogo di campionamento

Pista ciclabile Ivo Mancini

Via Berlinguer, Collesalvetti (LI) - PZ4 Punto di campionamento

	U.M.	Risultato Inc	certezza	Tab_BW1	analisi	Metodo
Metalli e Specie Metalliche						
Arsenico (As)	μg/l	8,5	+/- 1,7	10	04.04.22 - 21.04.22	EPA 6020B 2014

Arsenico (As)	μg/i	6,5	+/- 1,7	10	21.04.22	1 A 0020D 2014
Berillio (Be)	μg/l	<0,40		4	04.04.22 - 21.04.22	PA 6020B 2014
Cadmio (Cd)	μg/l	<0,50		5	04.04.22 - 21.04.22	PA 6020B 2014
Cobalto (Co)	μg/l	<5,0		50	04.04.22 - 21.04.22	PA 6020B 2014
Cromo totale (Cr)	μg/l	<5,0		50	04.04.22 - 21.04.22	PA 6020B 2014
Cromo VI	μg/l	<0,50		5	04.04.22 - 04.04.22	PA 7199 1996
Ferro (Fe)	μg/l	124	+/- 25	200	04.04.22 - 21.04.22	PA 6020B 2014
Manganese (Mn)	μg/l	1420	+/- 280	50	04.04.22 - 22.04.22	PA 6020B 2014
Mercurio (Hg)	μg/l	<0,10		1	04.04.22 - 21.04.22	PA 6020B 2014
Nichel (Ni)	μg/l	0,92	+/- 0,18	20	04.04.22 - 21.04.22	PA 6020B 2014
Piombo (Pb)	μg/l	<1,0		10	04.04.22 - 21.04.22	PA 6020B 2014
Rame (Cu)	μg/l	<5,0		1000	04.04.22 - 21.04.22	PA 6020B 2014
Zinco (Zn)	μg/l	<20		3000	04.04.22 - 21.04.22	PA 6020B 2014

-					21.07.22	
Berillio (Be)	μg/l	<0,40		4	04.04.22 - 21.04.22	EPA 6020B 2014
	μg/l	<0,50		5	04.04.22 - 21.04.22	EPA 6020B 2014
Cadmio (Cd) Cobalto (Co) Cromo totale (Cr) Cromo VI	μg/l	<5,0		50	04.04.22 - 21.04.22	EPA 6020B 2014
Cromo totale (Cr)	μg/l	<5,0		50	04.04.22 - 21.04.22	EPA 6020B 2014
Cromo VI	μg/l	<0,50		5	04.04.22 - 04.04.22	EPA 7199 1996
Ferro (Fe) Manganese (Mn) Mercurio (Hg)	μg/l	124	+/- 25	200	04.04.22 - 21.04.22	EPA 6020B 2014
Manganese (Mn)	μg/l	1420	+/- 280	50	04.04.22 - 22.04.22	EPA 6020B 2014
Mercurio (Hg)	μg/l	<0,10		1	04.04.22 - 21.04.22	EPA 6020B 2014
Nichel (Ni) Piombo (Pb) Rame (Cu) Zinco (Zn)	μg/l	0,92	+/- 0,18	20	04.04.22 - 21.04.22	EPA 6020B 2014
Piombo (Pb)	μg/l	<1,0		10	04.04.22 - 21.04.22	EPA 6020B 2014
Rame (Cu)	μg/l	<5,0		1000	04.04.22 - 21.04.22	EPA 6020B 2014
Zinco (Zn)	μg/l	<20		3000	04.04.22 - 21.04.22	EPA 6020B 2014
	Non Metallici - Anic	oni				
Costituenti Inorganici I	μg/l	<10		50	04.04.22 - 04.04.22	M.U. 2251:08 p.to 8.2.1
	μg/l	234	+/- 26	1500	04.04.22 - 05.04.22	APAT CNR IRSA 4020 Man 29 2003
Fluoruri Costituenti Organici - (Benzene	Composti Aromatic	i				
Benzene	µg/l	<0,010		1	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
		$u^{\mu \nu} u_{\mu \nu}$				
						pagina 1 di 5

-	Benzene	μg/l	<0,010	1	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018

AGROLAB GROUP Your labs. Your service.

Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231 carrara@agrolab.it www.agrolab.it

Data 04.07.2022

> Cod. cliente 200245

RAPPORTO DI PROVA

Ordine 17061 - Collesalvetti (LI)

N. campione: 103825

3						Inizio - fine	
2		U.M.	Risultato	Incertezza	Tab_BW1	analisi	Metodo
6555	Etilbenzene	μg/l	<0,010		50	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
Š	m+p-Xilene	μg/l	0,0207	+/- 0,0062	10	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
2	Stirene	μg/l	<0,010		25	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
5	Toluene	μg/l	<0,050		15	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018

	11.5	,		11.04.22 EPA 8260D 2018
Costituenti Organici - Compo	sti Alogena	ati		
Bromodiclorometano	µg/l	<0,010	0,17	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
cis-1,2-Dicloroetilene	µg/l	<0,010		04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Clorometano	μg/l	<0,050	1,5	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Cloruro di vinile	μg/l	<0,010	0,5	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Dibromoclorometano	µg/l	<0,010	0,13	04.04.22 - EPA 5030C 2003 + 11.04.22 EPA 8260D 2018
Esaclorobutadiene	µg/l	<0,010	0,15	04.04.22 - EPA 5030C 2003 + 11.04.22 EPA 8260D 2018
Sommatoria organoalogenati	µg/l	<0,050 #6)	10	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Tetracloroetilene (PCE)	µg/l	<0,050	1,1	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
trans-1,2-Dicloroetilene	µg/l	<0,010		04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Tribromometano (Bromoformio)	μg/l	<0,0050	0,3	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Tricloroetilene	μg/l	<0,010	1,5	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Triclorometano (cloroformio)	μg/l	<0,010	0,15	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,1-Dicloroetano	μg/l	<0,010	810	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,1-Dicloroetilene	μg/l	<0,0050	0,05	04.04.22 - 11.04.22 EPA 5030C 2003 + EPA 8260D 2018
1,1,2-Tricloroetano	μg/l	<0,010	0,2	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,1,2,2-Tetracloroetano	μg/l	<0,0050	0,05	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,2-Dibromoetano	μg/l	<0,00050	0,001	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,2-Dicloroetano	μg/l	<0,0050	3	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,2-Dicloroetilene	μg/l	<0,01 #6)	60	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,2-Dicloropropano	μg/l	3,3173	0,0052 0,15	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,2,3-Tricloropropano	μg/l	<0,00050	0,001	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018

				FFA 6200D 2016					
Costituenti Organici - Idrocarburi Policiclici Aromatici									
Benzo(a)antracene	μg/l	<0,00056	0,1	04.04.22 - EPA 3510C 1996 11.04.22 EPA 8270E 2018					
Benzo(a)pirene	µg/l	<0,00014	0,01	04.04.22 - EPA 3510C 1996 11.04.22 EPA 8270E 2018					
Benzo(b)fluorantene	µg/l	<0,00056	0,1	04.04.22 - EPA 3510C 1996 11.04.22 EPA 8270E 2018					
Benzo(g,h,i)perilene	µg/l	<0,00014	0,01	04.04.22 - EPA 3510C 1996 11.04.22 EPA 8270E 2018					
Benzo(k)fluorantene	µg/l	<0,00056	0,05	04.04.22 - EPA 3510C 1996 11.04.22 EPA 8270E 2018					
Crisene	µg/l	<0,00056	5	04.04.22 - EPA 3510C 1996 11.04.22 EPA 8270E 2018					

pagina 2 di 5

ISO/IEC 17025:2018. Solamente le prove non accreditate sono contrassegnate con il simbolo

Clordano

4.4-DDD

4,4-DDE

4.4-DDT

la UNI CEI

AGROLAB Ambiente S.r.I. a socio unico

GROUP

Your labs. Your service.

Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231 carrara@agrolab.it www.agrolab.it

> Data 04.07.2022 Cod. cliente 200245

> > 04.04.22 -

04.04.22 -09.04.22

04.04.22 -09.04.22

04.04.22

09.04.22

0,1

EPA 3510C 1996 +

EPA 8270E 2018

EPA 8270E 2018 EPA 3510C 1996 + EPA 8270E 2018

EPA 3510C 1996 +

EPA 8270E 2018

EPA 3510C 1996 +

RAPPORTO DI PROVA

17061 - Collesalvetti (LI) Ordine

μg/l

μg/l

μg/l

μg/l

103825 N. campione:

				Inizio - fine	
	U.M.	Risultato Incertezza	a Tab_BW1	. analisi	Metodo
Dibenzo(a,h)antracene	µg/l	<0,00056	0,01	04.04.22 - 11.04.22	EPA 3510C 1996 + EPA 8270E 2018
Indeno(1,2,3-c,d)pirene	μg/l	<0,00056	0,1	04.04.22 - 11.04.22	EPA 3510C 1996 + EPA 8270E 2018
Pirene	μg/l	<0,00056	50	04.04.22 - 11.04.22	EPA 3510C 1996 + EPA 8270E 2018
Sommatoria IPA 31,32,33,36	μg/l	<0,00056 #6)	0,1	04.04.22 - 11.04.22	EPA 3510C 1996 + EPA 8270E 2018
Costituenti Organici - Pestici	di				
Aldrin	μg/l	<0,00056	0,03	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
alfa-esaclorocicloesano	μg/l	<0,00056	0,1	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
Atrazina	μg/l	<0,00056	0,3	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
Beta-esaclorocicloesano	μg/l	<0,00056	0,1	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018

₹		. •	•		09.04.22	EPA 8270E 2018
	DDD, DDT, DDE	μg/l	<0,00056 #6)	0,1	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
5	Dieldrin	μg/l	<0,00056	0,03	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
5	Endrin	μg/l	<0,00056	0,1	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
2	Sommatoria Fitofarmaci	μg/l	<0,00056 #6)	0,5	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
2	2,4-DDD	μg/l	<0,00056		04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
2	2,4-DDE	μg/l	<0,00056		04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
•	2,4-DDT	μg/l	<0,00056		04.04.22 - 09.04.22	EPA 3510C 1996 +

<0,00056 #6)

Le prove riportate in questo documento sono accreditate secondo Costituenti Organici - Policlorobifenileteri

PCB (Aroclor 1242, 1248, 1254, 1260) 04.04.22 -EPA 3510C 1996 + <0.00022 0.01 μg/l EPA 8270E 2018

<0,00056

<0,00056

<0.00056

ossine		
 0000	O . G .	u

Ĭ	Diossine e Furani						
5	Equivalente di tossicità I-TEQ (NATO CCMS 1988)	J)	μg/l	<0,00000025 #6)	0,000004	04.04.22 - 11.05.22	EPA 1613B 1994(RC)
5	OCDD	٦)	μg/l	<0,0000010		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
2	OCDF	J)	μg/l	<0,0000010		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
5	1,2,3,4,6,7,8-HPCDD	J)	µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
3	1,2,3,4,6,7,8-HPCDF	J)	µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
2000	1,2,3,4,7,8-HXCDD	J)	µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
5	1,2,3,4,7,8-HXCDF	J)	µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
2	1,2,3,4,7,8,9-HPCDF	J)	μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
5	1,2,3,6,7,8-HXCDD	J)	μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
2	1,2,3,6,7,8-HXCDF	J)	μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B

riportate in questo documento

prove

AGROLAB Ambiente S.r.I. a socio unico

Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231

Your labs. Your service.

Data 04.07.2022 Cod. cliente 200245

RAPPORTO DI PROVA

carrara@agrolab.it www.agrolab.it

17061 - Collesalvetti (LI) Ordine

103825 N. campione:

				Inizio - fine	
	U.M.	Risultato Incertezz	a Tab_BW1 .	analisi	Metodo
1,2,3,7,8-PECDD	u) μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,7,8-PECDF	u) μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,7,8,9-HXCDD	u) μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,7,8,9-HXCDF	u) μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
2,3,4,6,7,8-HXCDF	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
2,3,4,7,8-PECDF	u) µg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
2,3,7,8-TCDD	u) µg/l	<0,0000010		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
2,3,7,8-TCDF	υ) μg/l	<0,0000010		04.04.22 - 11.05.22	EPA 1613B 1994(RC)

Idrocarburi

le prove non accreditate sono contrassegnate con il

Solamente

17025:2018.

CEI

Idrocarburi C<10	μg/l	<22		04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8015C 2007
Idrocarburi C<10 come n-esano	μg/l	<24 x)		04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8015C 2007
Idrocarburi C10-C40	μg/l	<28		04.04.22 - 11.04.22	UNI EN ISO 9377- 2:2002
Idrocarburi C10-C40 come n-esano	μg/l	<31 x)		04.04.22 - 11.04.22	UNI EN ISO 9377- 2:2002
Idrocarburi totali come n-esano	µg/l	<31 ^{#6)}	350	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8015C 2007 + UNI EN ISO 9377- 2:2002

x) I valori singoli che non raggiungono il limite di quantificazione non sono stati considerati.

#6) Il calcolo delle sommatorie è effettuato secondo la convenzione Lower Bound, che considera nullo il contributo di ogni addendo non rilevabile, applicando però la seguente modifica cautelativa: nel caso in cui le concentrazioni degli addendi siano non rilevabili, il risultato non è zero ma viene definito come inferiore al maggiore dei limiti di rilevabilità dei parametri analitici sommati. Legenda:

Il segno "<" nella colonna del risultato indica che la sostanza in questione non è quantificabile al di sotto del limite di quantificazione indicato.

U.M.: Unità di misura

LOQ: Limite di quantificazione, concentrazione sopra alla quale un analita può essere quantificato.

Il calcolo dell' incertezza analitica composta ed estesa citate nel presente rapporto di prova è basato sulla GUM (Guide to the expression of uncertainty in measurement, BIPM, IEC, IFCC, ISO, IUPAC, IUPAP and OIML, 2008) e sul Nordtest Report (Handbook for calculation of measurement uncertainty in environmental laboratories (TR 537 (ed. 4) 2017). Il fattore di copertura utilizzato è 2 per un livello di probabilità del 95% (intervallo di confidenza).

Il Laboratorio che emette il presente Rapporto di Prova non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati.

Tab_BW1: Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e ss.mm.ii. Concentrazione Soglia di contaminazione nelle acque sotterranee

u) Servizio effettuato da un laboratorio di AGROLAB GROUP

Laboratorio del Gruppo Agrolab

Prova effettuata da

(RC) AGROLAB Sede Altavilla Vicentina, Via Retrone 29/31, 36077 Altavilla Vicentina, accreditato secondo UNI CEI EN ISO/IEC 17025:2018, Numero di accreditamento: 0147L

Valore U.M.

1420 µg/l

Metodi di analisi

EPA 1613B 1994

I seguenti parametri superano i limiti o si trovano al di fuori dell'intervallo richiesto

Parametro di analisi

Manganese (Mn)

L'ENTE ITALIANO DI ACCREDITAMENTO

(valore al di sopra del limite richiesto)

pagina 4 di 5

contrassegnate

Solamente le prove non accreditate sono

17025:2018.

ISO/IEC

Le prove riportate in questo documento sono accreditate secondo la UNI CEI

AGROLAB Ambiente S.r.l. a socio unico Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231 carrara@agrolab.it www.agrolab.it

Data 04.07.2022 Cod. cliente 200245

RAPPORTO DI PROVA

17061 - Collesalvetti (LI) Ordine

103825 N. campione:

Il Laboratorio che emette il presente Rapporto di Prova non è responsabile delle informazioni di campionamento dichiarate dal Cliente o da personale da lui incaricato (Luogo campionamento, Punto campionamento, Metodo di campionamento e Data Campionamento).

Per il parametro Cianuri liberi è stato preso in considerazione il MDL pertanto non è stata associata la relativa incertezza di misura. Per il parametro PCB (Aroclor 1242, 1248, 1254, 1260) è stato preso in considerazione il MDL pertanto non è stata associata la relativa incertezza di misura .

Data inizio attività in laboratorio: 04.04.2022 Data fine prove: 11.05.2022

I risultati si riferiscono solamente ai campioni analizzati. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti. La riproduzione parziale del Rapporto di Prova deve essere autorizzata per iscritto dal Laboratorio. La regola decisionale applicata alle valutazioni di conformità, in mancanza di richieste diverse da parte del committente, non considera l'incertezza di misura.

CHIMICI E DE/FIN Dott CHIMICO N. 1219 Sez. Il Responsabile Chunico (dr Maure Placido Fallica) FINE DEL RAPPORTO DI PROVA

Il Responsabile del L'aboratorio (dr.ssa Anna Paghani)

AMBI Moira Ferrari, Tel. 0585/1818717 Email: Moira.Ferrari@agrolab.it **CRM Ambientale**

ISO/IEC

N N

AGROLAB Ambiente S.r.l. a socio unico

Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231 carrara@agrolab.it www.agrolab.it

AMBIENTE S.P.A. Via Frassina, 21 54033 CARRARA (MS)

> 04.07.2022 Data

Cod. cliente 200245

RAPPORTO DI PROVA

Ordine 17061 - Collesalvetti (LI)

N. campione: 103826

Fattura a **200005 AMBIENTE S.P.A.** Progetto 90: Collesalvetti (LI)

Ricevimento campione: 04.04.2022 Data Campionamento: 30.03.2022

Campionato da: Committente (Personale ambiente s.p.a. - Borsacchi)

Descrizione del campione fornita dal Campione di acqua di falda - PZ5

cliente:

contrassegnate con il simbolo " *) '

Metodo di campionamento: APAT CNR IRSA 1030 Man 29 2003 - Prelievo effettuato a cura di

ambiente s.p.a.(*)

Via Berlinguer loc. Stagno, Collesalvetti (LI) -Luogo di campionamento

Pista ciclabile Ivo Mancini

Via Berlinguer, Collesalvetti (LI) - PZ5 Punto di campionamento

				Inizio - fine	
U.M.	Risultato Ince	ertezza	Tab_BW1	analisi	Metodo

Metalli e Specie Metalliche

Arsenico (As)	μg/l	1,69 +/-	0,34 10	04.04.22 - EPA 6020B 2014 21.04.22
Berillio (Be)	μg/l	<0,40	4	04.04.22 - 21.04.22 EPA 6020B 2014
Cadmio (Cd)	μg/l	<0,50	5	04.04.22 - 21.04.22 EPA 6020B 2014
Cobalto (Co)	μg/l	<5,0	50	04.04.22 - 21.04.22 EPA 6020B 2014
Cromo totale (Cr)	μg/l	<5,0	50	04.04.22 - 21.04.22 EPA 6020B 2014
Cromo VI	μg/l	<0,50	5	04.04.22 - 04.04.22 EPA 7199 1996
Ferro (Fe)	μg/l	149 +/-	- 30 200	04.04.22 - 21.04.22 EPA 6020B 2014
Manganese (Mn)	μg/l	1240 +/-	250 50	04.04.22 - 22.04.22 EPA 6020B 2014
Mercurio (Hg)	μg/l	<0,10	1	04.04.22 - 21.04.22 EPA 6020B 2014
Nichel (Ni)	μg/l	<0,400	20	04.04.22 - 21.04.22 EPA 6020B 2014
Piombo (Pb)	μg/l	<1,0	10	04.04.22 - 21.04.22 EPA 6020B 2014
Rame (Cu)	μg/l	<5,0	1000	04.04.22 - 21.04.22 EPA 6020B 2014
Zinco (Zn)	μg/l	<20	3000	04.04.22 - EPA 6020B 2014

					21.07.22	
Berillio (Be)	μg/l	<0,40		4	04.04.22 - 21.04.22	EPA 6020B 2014
Cadmio (Cd)	μg/l	<0,50		5	04.04.22 - 21.04.22	EPA 6020B 2014
Cobalto (Co)	μg/l	<5,0		50	04.04.22 - 21.04.22	EPA 6020B 2014
Cromo totale (Cr)	μg/l	<5,0		50	04.04.22 - 21.04.22	EPA 6020B 2014
Cromo VI	μg/l	<0,50		5	04.04.22 - 04.04.22	EPA 7199 1996
Ferro (Fe)	μg/l	149	+/- 30	200	04.04.22 - 21.04.22	EPA 6020B 2014
Manganese (Mn)	μg/l	1240	+/- 250	50	04.04.22 - 22.04.22	EPA 6020B 2014
Mercurio (Hg)	μg/l	<0,10		1	04.04.22 - 21.04.22	EPA 6020B 2014
Nichel (Ni)	μg/l	<0,400		20	04.04.22 - 21.04.22	EPA 6020B 2014
Piombo (Pb)	μg/l	<1,0		10	04.04.22 - 21.04.22	EPA 6020B 2014
Rame (Cu)	μg/l	<5,0		1000	04.04.22 - 21.04.22	EPA 6020B 2014
Zinco (Zn)	μg/l	<20		3000	04.04.22 - 21.04.22	EPA 6020B 2014
Costituenti Inorganici I	Non Metallici - Anior	ni		·		
Cianuri liberi	μg/l	<10		50	04.04.22 - 04.04.22	M.U. 2251:08 p.to 8.2.1
Fluoruri	µg/l	523	+/- 58	1500	04.04.22 - 05.04.22	APAT CNR IRSA 4020 Man 29 2003
Costituenti Organici - C	Composti Aromatici					
Benzene	µg/l	0,0118	+/- 0,0035	1	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
		Mahalaha.				
						pagina 1 di 5

•	Benzene	µg/l	0,0118	+/- 0,0035	1	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8260D 2018
						•	

AGROLAB GROUP

Your labs. Your service.

Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231 carrara@agrolab.it www.agrolab.it

Data 04.07.2022 Cod. cliente 200245

3							Inizio - fine	
ž		U.M.	Risultato	Incertezza	Tab_BW1		analisi	Metodo
9	Etilbenzene	μg/l	<0,010		50			EPA 5030C 2003 + EPA 8260D 2018
Ś	m+p-Xilene	μg/l	<0,020		10			EPA 5030C 2003 + EPA 8260D 2018
2	Stirene	μg/l	<0,010		25	·		EPA 5030C 2003 + EPA 8260D 2018
5	Toluene	μg/l	<0,050		15			EPA 5030C 2003 + EPA 8260D 2018

. 5.0.5.1.5	Р9/-	40,000	.0	11.04.22 EPA 8260D 2018
Costituenti Organici - Compo	sti Alogenati	į		
Bromodiclorometano	μg/l	<0,010	0,17	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
cis-1,2-Dicloroetilene	μg/l	<0,010		04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Clorometano	μg/l	<0,050	1,5	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Cloruro di vinile	μg/l	<0,010	0,5	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Dibromoclorometano	μg/l	<0,010	0,13	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Esaclorobutadiene	μg/l	<0,010	0,15	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Sommatoria organoalogenati	μg/l	<0,050 #6)	10	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Tetracloroetilene (PCE)	μg/l	<0,050	1,1	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
trans-1,2-Dicloroetilene	μg/l	<0,010		04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Tribromometano (Bromoformio)	μg/l	<0,0050	0,3	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Tricloroetilene	μg/l	<0,010	1,5	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
Triclorometano (cloroformio)	μg/l	<0,010	0,15	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,1-Dicloroetano	μg/l	<0,010	810	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,1-Dicloroetilene	μg/l	<0,0050	0,05	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,1,2-Tricloroetano	μg/l	<0,010	0,2	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,1,2,2-Tetracloroetano	μg/l	<0,0050	0,05	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,2-Dibromoetano	μg/l	<0,00050	0,001	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,2-Dicloroetano	μg/l	<0,0050	3	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,2-Dicloroetilene	μg/l	<0,01 #6)	60	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,2-Dicloropropano	μg/l	<0,0050	0,15	04.04.22 - EPA 5030C 2003 + EPA 8260D 2018
1,2,3-Tricloropropano	μg/l	<0,00050	0,001	04.04.22 - 11.04.22 EPA 5030C 2003 + EPA 8260D 2018

RAPPORTO DI PROVA				Cod. cliente	200
Ordine N. campione:		7061 - Collesalvetti (LI) 03826			
	U.M.	Risultato Incertezz	a Tab_BW1	Inizio - fine . analisi	Metodo
Etilbenzene	μg/l	<0,010	50	04.04.22 - 11.04.22	EPA 5030C 2003
m+p-Xilene	µg/l	<0,020	10	04.04.22 - 11.04.22	EPA 8260D 2018 EPA 5030C 2003 EPA 8260D 2018
Stirene	µg/l	<0,010	25	04.04.22 - 11.04.22	EPA 5030C 2003
Toluene	μg/l	<0,050	15	04.04.22 - 11.04.22	EPA 8260D 2018 EPA 5030C 2003 EPA 8260D 2018
Costituenti Organici - Compo	osti Aloger	nati		11.04.22	EPA 6200D 2016
Bromodiclorometano	µg/l	<0,010	0,17	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
cis-1,2-Dicloroetilene	μg/l	<0,010		04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Clorometano	μg/l	<0,050	1,5	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Cloruro di vinile	μg/l	<0,010	0,5	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Dibromoclorometano	μg/l	<0,010	0,13	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Esaclorobutadiene	μg/l	<0,010	0,15	04.04.22 - 11.04.22	EPA 5030C 2003
Sommatoria organoalogenati	µg/l	<0,050 #6)	10	04.04.22 - 11.04.22	EPA 8260D 2018 EPA 5030C 2003
Tetracloroetilene (PCE)	µg/l	<0,050	1,1	04.04.22 - 11.04.22	EPA 8260D 2018 EPA 5030C 2003
trans-1,2-Dicloroetilene	µg/l	<0,010		04.04.22 - 11.04.22	EPA 8260D 2018 EPA 5030C 2003
Tribromometano (Bromoformio)	µg/l	<0,0050	0,3	04.04.22 - 11.04.22	EPA 8260D 2018 EPA 5030C 2003
Tricloroetilene	µg/l	<0,010	1,5	04.04.22 - 11.04.22	EPA 8260D 2018 EPA 5030C 2003 EPA 8260D 2018
Triclorometano (cloroformio)	µg/l	<0,010	0,15	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,1-Dicloroetano	μg/l	<0,010	810	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,1-Dicloroetilene	µg/l	<0,0050	0,05	04.04.22 - 11.04.22	EPA 5030C 2003
1,1,2-Tricloroetano	µg/l	<0,010	0,2	04.04.22 - 11.04.22	EPA 8260D 2018 EPA 5030C 2003
1,1,2,2-Tetracloroetano	µg/l	<0,0050	0,05	04.04.22 - 11.04.22	EPA 8260D 2018 EPA 5030C 2003
1,2-Dibromoetano	µg/l	<0,00050	0,001	04.04.22 - 11.04.22	EPA 8260D 2018 EPA 5030C 2003
1,2-Dicloroetano	µg/l	<0,0050	3	04.04.22 - 11.04.22	EPA 8260D 2018 EPA 5030C 2003
1,2-Dicloroetilene	μg/l	<0,01 #6)	60	04.04.22 - 11.04.22	EPA 8260D 2018 EPA 5030C 2003 EPA 8260D 2018
1,2-Dicloropropano	μg/l	<0,0050	0,15	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
1,2,3-Tricloropropano	μg/l	<0,00050	0,001	04.04.22 - 11.04.22	EPA 5030C 2003 EPA 8260D 2018
Costituenti Organici - Idrocai	 rburi Polici	iclici Aromatici		1.00.02	LFA 0200D 2010
Benzo(a)antracene	μg/l	<0,00056	0,1	04.04.22 - 11.04.22	EPA 3510C 1996 EPA 8270E 2018
Benzo(a)pirene	µg/l	0,00045 +/- 0,000	13 0,01	04.04.22 - 11.04.22	EPA 3510C 1996 EPA 8270E 2018
Benzo(b)fluorantene	µg/l	<0,00056	0,1	04.04.22 - 11.04.22	EPA 3510C 1996 EPA 8270E 2018
Benzo(g,h,i)perilene	μg/l	<0,00014	0,01	04.04.22 - 11.04.22	EPA 3510C 1996 EPA 8270E 2018
Benzo(k)fluorantene	µg/l	<0,00056	0,05	04.04.22 - 11.04.22	EPA 3510C 1996 EPA 8270E 2018
Crisene	μg/l	<0,00056	5	04.04.22 -	EPA 3510C 1996

ISO/IEC 17025:2018. Solamente le prove non accreditate sono contrassegnate con il simbolo

AGROLAB Ambiente S.r.I. a socio unico

AGROLAB GROUP Your labs. Your service.

Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231 carrara@agrolab.it www.agrolab.it

> Data 04.07.2022 200245

Cod. cliente

09.04.22

04.04.22 -09.04.22

04.04.22 -09.04.22

04.04.22

09.04.22

EPA 8270E 2018

EPA 8270E 2018

EPA 3510C 1996 +

EPA 3510C 1996 + EPA 8270E 2018

EPA 3510C 1996 +

RAPPORTO DI PROVA

17061 - Collesalvetti (LI) Ordine

103826 N. campione:

					Inizio - fine	
	U.M.	Risultato	Incertezza	Tab_BW1	. analisi	Metodo
Dibenzo(a,h)antracene	μg/l	<0,00056		0,01	04.04.22 - 11.04.22	EPA 3510C 1996 + EPA 8270E 2018
Indeno(1,2,3-c,d)pirene	μg/l	<0,00056		0,1	04.04.22 - 11.04.22	EPA 3510C 1996 + EPA 8270E 2018
Pirene	μg/l	0,00250	+/- 0,00075	50	04.04.22 - 11.04.22	EPA 3510C 1996 + EPA 8270E 2018
Sommatoria IPA 31,32,33,36	μg/l	<0,00056 #6)		0,1	04.04.22 - 11.04.22	EPA 3510C 1996 + EPA 8270E 2018
Costituenti Organici - Pestic	idi					
Aldrin	μg/l	<0,00056		0,03	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
alfa-esaclorocicloesano	μg/l	<0,00056		0,1	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
Atrazina	μg/l	<0,00056		0,3	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
Beta-esaclorocicloesano	μg/l	<0,00056		0,1	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
Clordano	μg/l	<0,00056 #6)		0,1	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
DDD, DDT, DDE	μg/l	<0,00056 #6)		0,1	04.04.22 - 09.04.22	EPA 3510C 1996 +

3	,,	F-9''	10,0000	3,1	09.04.22	EPA 8270E 2018
5	Dieldrin	μg/l	<0,00056	0,03	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
5	Endrin	μg/l	<0,00056	0,1	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
2	Sommatoria Fitofarmaci	μg/l	<0,00056 #6)	0,5	04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
	2,4-DDD	μg/l	<0,00056		04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
2	2,4-DDE	μg/l	<0,00056		04.04.22 - 09.04.22	EPA 3510C 1996 + EPA 8270E 2018
_	2,4-DDT	μg/l	<0,00056		04.04.22 -	EPA 3510C 1996 +

<0,00056

<0,00056

<0.00056

la UNI C μg/l Costituenti Organici - Policlorobifenileteri

μg/l

μg/l

Dioss		
-:000	 	•••

4.4-DDD

4,4-DDE

4.4-DDT

CEI

7,7-001	μ9/1	<0,00030		09.04.22	EPA 8270E 2018
Costituenti Organici - Polic	lorobifenilet	eri			
PCB (Aroclor 1242, 1248, 1254, 1260)	μg/l	<0,00022	0,01	04.04.22 - 09.04.22	EPA 3510C 1996 - EPA 8270E 2018
Diossine e Furani					
Equivalente di tossicità I-TEQ (NATO CCMS 1988)	u) µg/l	<0,00000025 #6)	0,000004	04.04.22 - 11.05.22	EPA 1613B 1994(RC)
OCDD	^{u)} μg/l	<0,0000010		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
OCDF	^{u)} μg/l	<0,0000010		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,4,6,7,8-HPCDD	^{u)} μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,4,6,7,8-HPCDF	^{u)} μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,4,7,8-HXCDD	^{u)} μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,4,7,8-HXCDF	^{u)} μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,4,7,8,9-HPCDF	^{u)} μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,6,7,8-HXCDD	^{u)} μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2,3,6,7,8-HXCDF	^{u)} μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)

riportate in questo documento

prove

AGROLAB Ambiente S.r.I. a socio unico

AGROLAB GROUP
Your labs. Your service.

Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231 carrara@agrolab.it www.agrolab.it

> Data 04.07.2022 Cod. cliente 200245

RAPPORTO DI PROVA

Ordine 17061 - Collesalvetti (LI)

N. campione: **103826**

)					Inizio - fine	
		U.M.	Risultato Incerte	ezza Tab_BW1 .	analisi	Metodo
7,2	2,3,7,8-PECDD u)	μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2	2,3,7,8-PECDF u)	μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2	2,3,7,8,9-HXCDD ^{u)}	μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
1,2	2,3,7,8,9-HXCDF ^{u)}	μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
2,3	3,4,6,7,8-HXCDF ^{u)}	μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
2,3		μg/l	<0,0000050		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
2,3	3,7,8-TCDD ^{u)}	μg/l	<0,0000010		04.04.22 - 11.05.22	EPA 1613B 1994(RC)
2,3	3,7,8-TCDF u)	μg/l	<0,0000010		04.04.22 - 11.05.22	EPA 1613B 1994(RC)

Idrocarburi

le prove non accreditate sono contrassegnate con il

Solamente

17025:2018.

SO/IEC

CEI

Z

Idrocarburi C<10	μg/l	<22		04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8015C 2007
Idrocarburi C<10 come n-esano	μg/l	<24 ×)		04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8015C 2007
Idrocarburi C10-C40	μg/l	<28		04.04.22 - 11.04.22	UNI EN ISO 9377- 2:2002
Idrocarburi C10-C40 come n-esano	μg/l	<31 ×)		04.04.22 - 11.04.22	UNI EN ISO 9377- 2:2002
Idrocarburi totali come n-esano	µg/l	<31 #6)	350	04.04.22 - 11.04.22	EPA 5030C 2003 + EPA 8015C 2007 + UNI EN ISO 9377- 2:2002

x) I valori singoli che non raggiungono il limite di quantificazione non sono stati considerati.

#6) Il calcolo delle sommatorie è effettuato secondo la convenzione Lower Bound, che considera nullo il contributo di ogni addendo non rilevabile, applicando però la seguente modifica cautelativa: nel caso in cui le concentrazioni degli addendi siano non rilevabili, il risultato non è zero ma viene definito come inferiore al maggiore dei limiti di rilevabilità dei parametri analitici sommati.

Legenda:

Il segno "<" nella colonna del risultato indica che la sostanza in questione non è quantificabile al di sotto del limite di quantificazione indicato.

U.M.: Unità di misura

LOQ: Limite di quantificazione, concentrazione sopra alla quale un analita può essere quantificato.

Il calcolo dell' incertezza analitica composta ed estesa citate nel presente rapporto di prova è basato sulla GUM (Guide to the expression of uncertainty in measurement, BIPM, IEC, IFCC, ISO, IUPAC, IUPAP and OIML, 2008) e sul Nordtest Report (Handbook for calculation of measurement uncertainty in environmental laboratories (TR 537 (ed. 4) 2017). Il fattore di copertura utilizzato è 2 per un livello di probabilità del 95% (intervallo di confidenza).

Il Laboratorio che emette il presente Rapporto di Prova non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati.

Tab_BW1: Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e ss.mm.ii. Concentrazione Soglia di contaminazione nelle acque sotterranee

u) Servizio effettuato da un laboratorio di AGROLAB GROUP

Laboratorio del Gruppo Agrolab

Prova effettuata da

(RC) AGROLAB Sede Altavilla Vicentina, Via Retrone 29/31, 36077 Altavilla Vicentina, accreditato secondo UNI CEI EN ISO/IEC 17025:2018, Numero di accreditamento: 0147L

Valore U.M.

Metodi di analisi

EPA 1613B 1994

I seguenti parametri superano i limiti o si trovano al di fuori dell'intervallo richiesto

Parametro di analisi

Manganese (Mn)

1240 μg/l (ν

(valore al di sopra del limite richiesto)

L'ENTE ITALIANO DI ACCREDITAMENTO

pagina 4 di 5

contrassegnate

Solamente le prove non accreditate sono

17025:2018.

ISO/IEC

Le prove riportate in questo documento sono accreditate secondo la UNI CEI

AGROLAB Ambiente S.r.I. a socio unico

AGROLAB GROUP
Your labs. Your service.

Via Frassina, 21 54033 Carrara MS - Italy Tel.: +39 0585 1693231 carrara@agrolab.it www.agrolab.it

> Data 04.07.2022 Cod. cliente 200245

RAPPORTO DI PROVA

Ordine 17061 - Collesalvetti (LI)

N. campione: **103826**

Il Laboratorio che emette il presente Rapporto di Prova non è responsabile delle informazioni di campionamento dichiarate dal Cliente o da personale da lui incaricato (Luogo campionamento, Punto campionamento, Metodo di campionamento e Data Campionamento).

Per il parametro Cianuri liberi è stato preso in considerazione il MDL pertanto non è stata associata la relativa incertezza di misura. Per il parametro PCB (Aroclor 1242, 1248, 1254, 1260) è stato preso in considerazione il MDL pertanto non è stata associata la relativa incertezza di misura .

Data inizio attività in laboratorio: 04.04.2022 Data fine prove: 11.05.2022

I risultati si riferiscono solamente ai campioni analizzati. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti. La riproduzione parziale del Rapporto di Prova deve essere autorizzata per iscritto dal Laboratorio. La regola decisionale applicata alle valutazioni di conformità, in mancanza di richieste diverse da parte del committente, non considera l'incertezza di misura.

Dott.

Dott.

Maure Placido Fallica

CHIMICO

N. 1219 Sez.

II Responsabile Chimico

(dr Maure Placido Fallica)

FINE DEL RAPPORTO DI PROVA

Il Responsabile del Laboratorio (dr.ssa Anna Pagliani)

AMBI Moira Ferrari, Tel. 0585/1818717 Email: Moira.Ferrari@agrolab.it CRM Ambientale

ALLEGATO 5

RDP

CARATTERIZZAZIONI RIFIUTO TERRENI

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it- www.agrolab.it

Rapporto di prova n°: 22LA0032198 del 04/07/2022

Spett.

Ambiente s.p.a.

Via Frassina, 21
54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione Rifiuti solidi - Caratterizzazione 1 (S1,S2,S3,S7)

Codice EER dichiarato dal Produttore/Detentore: 17 05 04 - terra e rocce, diverse da quelle di cui alla voce 17 05 03

Luogo di campionamento: Area di Proprietà Pubblica Sita In Via Berlinguer Loc. Stagno, Collesalvetti (LI)

Punto di prelievo: Area a Nord dell'Oleodotto

Prelevato da: Personale ambiente s.p.a. - Raspolli-Borsacchi

Metodo di Campionamento: UNI 10802:2013 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: RIF-COLLE1

Prelevato il: 20/05/2022

Data Accettazione: 24/05/2022

Data inizio analisi: 06/06/2022 Data fine analisi: 16/06/2022

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	
pH CNR IRSA 1 Q 64 Vol 3 1985 + APAT CNR IRSA 20	upH 960 Man 29 2003	8.6	±0,2	
Residuo secco a 105°C UNI EN 14346:2007	%p/p	89	±4	
Residuo al Fuoco a 550°C (ROI) UNI EN 15169:2007	% p/p	86	±7	
Carbonio organico totale (TOC) UNI EN 13137:2002	% p/p	5.9	±0,8	
Cobalto UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	7.4	±2,6	
Cadmio UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	< 4.4		
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0.24	±0,07	
Cromo totale UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	55	±19	
Antimonio UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	< 4.4		
Arsenico UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	7.9	±2,8	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0032198 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	
Bario UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	270	±93	
Berillio UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	< 4.4		
Boro UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	9.5	±3,3	
Selenio UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	< 4.4		
Piombo <i>UNI EN 13657:2004 + UNI EN ISO 11885:2009</i>	mg/kg	57	±20	
* Mercurio UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	8.4	±3,0	
Molibdeno UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	< 4.4		
Nichel UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	53	±19	
Stagno UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	< 4.4		
Tallio UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	< 4.4		
* Tellurio UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	< 4.4		
Rame UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	43	±15	
Vanadio UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	26	±9	
Zinco UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	140	±51	
Naftalene <i>EPA</i> 3550C 2007 + <i>EPA</i> 8270E 2018	mg/kg	< 0.043		
Indeno (1,2,3 - c,d) pirene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	0.052	±0,018	
Pirene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	0.063	±0,022	
Benzo (a) antracene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.043		
Benzo (a) pirene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	0.044	±0,016	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0032198 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza
Benzo (b) fluorantene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	0.048	±0,017
Benzo (e) pirene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.043	
Benzo (g,h,i) perilene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	0.051	±0,018
Benzo (j) fluorantene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.043	
Benzo (k) fluorantene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.043	
Antracene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.043	
Acenaftene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.043	
Acenaftilene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.043	
Dibenzo (a,e) pirene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.043	
Dibenzo (a,h) antracene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.043	
Dibenzo (a,h) pirene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.043	
Dibenzo (a,i) pirene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.043	
Dibenzo (a,l) pirene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.043	
Crisene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	0.055	±0,019
Fenantrene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.043	
Fluorantene <i>EPA</i> 3550C 2007 + <i>EPA</i> 8270E 2018	mg/kg	0.058	±0,020
Fluorene <i>EPA</i> 3550C 2007 + <i>EPA</i> 8270E 2018	mg/kg	< 0.043	
Solventi organo alogenati EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.0045	
* Solventi organici (da Calcolo) EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 8.9	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0032198 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza
Benzene EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.00089	
Isopropilbenzene EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.0045	
Dipentene EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.089	
1,3 - Butadiene EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.0089	
Etilbenzene EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.0045	
Stirene EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.0045	
Toluene EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.0045	
Xilene EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.0089	
Tetraclorometano EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.0045	
Esaclorobutadiene <i>EPA 5021A 2014 + EPA 8260D 2018</i>	mg/kg	< 0.0045	
1,1,1 - Tricloroetano EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.0045	
* 1,1-dicloro-1-fluoroetano EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.0045	
Bromometano EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.0045	
* Somm. PCDD, PCDF conversione T.E. EPA 8280B 2007 + DM 27/09/2010 GU N°281 01/12	mg WHO-TEQ/kg 2/2010	< 0.0001	
Sommatoria PCB EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB28 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB52 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB77 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB81 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	

Via Frassina, 21 - Carrara (MS) - 54033

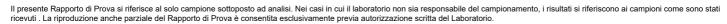
Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0032198 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza
PCB95 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB99 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB101 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB105 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB110 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB114 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB118 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB123 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB126 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB128 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB138 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB146 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB149 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB151 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB153 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB156 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB157 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB167 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB169 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	

Via Frassina, 21 - Carrara (MS) - 54033


Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0032198 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza
PCB170 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB177 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB180 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB183 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB187 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCB189 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.0086	
PCT EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.35	
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0.21	
Idrocarburi C>12 UNI EN 14039:2005	mg/kg	790	±220
Idrocarburi C10-C40 <i>UNI EN 140</i> 39:2005	mg/kg	820	±230
Idrocarburi Alifatici C5-C8 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0.15	
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Assente	Assente	
* Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

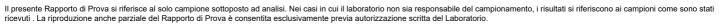
Your labs. Your service.

AGROLAB GROUP

segue Rapporto di prova n°: 22LA0032198 del 04/07/2022

eluato UNI 10802:2013	3 DM 05/0	2/1998			
Parametro Metodo	U.M.	Risultato	Incertezza	Allegato 3	D.M. 05/02/1998
Residuo secco a 105°C UNI EN 14346:2007	%p/p	89	±4		
Conducibilità UNI EN 12457-2:2004 + UNI EN 27888:1995	μS/cm	491	±30		
Nitrati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	< 0.1		50	
Fluoruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0.57	±0,06	1,5	
Cloruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	7.5	±0,8	100	
Cianuri UNI EN 12457-2:2004 + APAT CNR IRSA 4070 Man 2	μg/l 29 2003	< 10		50	
Bario UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	0.072	±0,014	1	
Rame UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	0.0058	±0,0012	0,05	
Zinco UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0.020		3	
Berillio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0.40		10	
Cobalto UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 5.0		250	
Nichel UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	2.2	±0,4	10	
Vanadio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 5.0		250	
Arsenico UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	1.9	±0,4	50	
Cadmio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0.50		5	
Cromo totale UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 5.0		50	
Piombo UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 1.0		50	
Selenio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 1.0		10	

Via Frassina, 21 - Carrara (MS) - 54033


Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0032198 del 04/07/2022

eluato UNI 10802:2013	DM 05/	02/1998			
Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
Mercurio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	0.27	±0,05	1	
Amianto (ricerca quantitativa) DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI E	mg/l N 12457-2:2	< 10 2004 + DM 06/09/1994	GU n° 288 10/12/	30 /1994 All 2A	
Richiesta chimica di ossigeno (COD) UNI EN 12457-2:2004 + ISO 15705:2002	mg/l	▶ 36	±9	30	
* pH DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI B	upH EN 12457-2:	8.08 2004 + APAT CNR IRS	±0,20 SA 2060 Man 29 2	5,5÷12 2003	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0032198 del 04/07/2022

eluato UNI 10802:2013	BDLgs 13	/01/2003					
Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs n°36 tab. 2	del 13/01/03 e tab. 5	ss.mm.ii. tab. 6	
Residuo secco a 105°C UNI EN 14346:2007	%p/p	89	±4				
pH UNI EN 12457-2:2004 + ISO 10523:2008	upH	8.1	±0,2				
Conducibilità UNI EN 12457-2:2004 + UNI EN 27888:1995	μS/cm	491.0	±29,5				
Arsenico UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	0.0019	±0,0004	0,05	0,2	2.5	
Bario UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	0.072	±0,014	2	10	30	
Cadmio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0.00050		0,004	0,1	0.5	
Cromo tot. UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0.0050		0,05	1	7	
Rame UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	0.0058	±0,0012	0,2	5	10	
Mercurio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	0.00027	±0,00005	0,001	0,02	0.2	
Molibdeno UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0.020		0,05	1	3	
Nichel UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	0.0022	±0,0004	0,04	1	4	
Piombo UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0.0010		0,05	1	5	
Antimonio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	0.0011	±0,0002	0,006	0,07	0.5	
Selenio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0.0010		0,01	0,05	0.7	
Zinco UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0.020		0,4	5	20	
Cloruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	7.5	±0,8	80	2500	2500	
Fluoruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0.57	±0,06	1	15	50	
* Indice fenolo UNI EN 12457-2:2004 + ISO 6439:1990	mg/l	< 0.010		0,1			

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0032198 del 04/07/2022

eluato UNI 10802:20								
Parametro Metodo	U.M.		Risultato	Incertezza	D.Lgs n°36 tab. 2	6 del 13/01/03 e tab. 5	ss.mm.ii. tab. 6	
TDS (solidi disciolti totali) UNI EN 12457-2:2004 + UNI EN 15216:2008	mg/l	٠	480	±100	400	10000	10000	
DOC (carbonio organico disciolto) UNI EN 12457-2:2004 + UNI EN 1484:1999	mg/l		8.5	±1,7	50	100	100	

eluato UNI 10802:2013 DM 05/02/1998 - DL1 - First dilution sample

Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
Solfati UNI FN 12457-2:2004 + UNI FN ISO 10304-1:2009	mg/l	160	±18	250	

eluato UNI 10802:2013 DLgs 13/01/2003 - DL2 - Second dilution sample

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.Lgs n°36 del 13/01/03 e ss.mm.ii.			
					tab. 2	tab. 5	tab. 6
Solfati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	٠	160	±18	100	5000	5000

(*) - Prova non accreditata ACCREDIA

▶ Valore uguale o superiore al limite indicato per il parametro

Limiti:

D.Lgs n° 36 del 13/01/2003 e ss.mm.ii.:

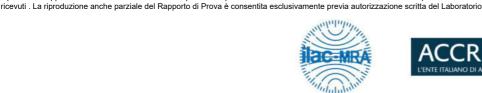
tab.2: Tabella 2 del Decreto Legislativo n° 36 del 13/01/2003 e ss.mm.ii.: Limiti di concentrazione nell'eluato per l'accettabilità in discariche per rifiuti inerti

tab.5: Tabella 5 del Decreto Legislativo n° 36 del 13/01/2003 e ss.mm.ii.: Limiti di concentrazione nell'eluato per l'accettabilità in discariche per rifiuti non pericolosi

tab.6: Tabella 6 del Decreto Legislativo n° 36 del 13/01/2003 e ss.mm.ii.: Limiti di concentrazione nell'eluato per l'accettabilità in discariche per rifiuti pericolosi

DM 05/02/98: Allegato 3 al Decreto Ministeriale del 05/02/1998 Individuazione dei rifiuti non pericolosi sottoposti alle procedure semplificate di recupero ai sensi degli articoli 31 e 33 del decreto legislativo 5 febbraio 1997, n. 22 Concentrazioni limite.

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati


Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al relativo RL.

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0032198 del 04/07/2022

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

La preparazione delle aliquote di prova del campione è stata eseguita secondo quanto richiesto dalla norma UNI EN 15002 (prova non accreditata). La riduzione granulometrica è stata effettuata tramite Mulino a mascelle.

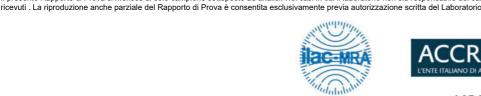
La successiva fase di omogenizzazione è stata effettuata conformemente a quanto previsto dalla sequenza di operazioni (flow sheet) a pag 11 della norma tecnica UNI EN 15002 (prova non accreditata).

Prova di eluizione eseguita in data 07/06/2022 in contenitore di polietilene della capacità di 1 litro.

Dispositivo di miscelazione a rovesciamento (10 giri/min). Separazione liquido solido mediante filtrazione sottovuoto con filtro in Nitrato di Cellulosa (0,45 µm).

Il campione è stato passato attraverso un setaccio a 4 mm. La conducibilità viene riportata alla temperatura di 25°C.

Temperatura eluato: 22 C°.


Massa campione di laboratorio: 102 g. Volume dell'agente liscivante 0.888 l. Rapporto del contenuto di umidità MC: 89 %.

Peso campione (g): 320. Frazione non macinabile: 0 %. Frazione eccedente i 4 mm: 3.13 %.

File firmato digitalmente.

Responsabile Chimico
Dott. Fallica Mauro Placido
N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E
DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0032198

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Nazzano Carrara, 04 luglio 2022 FILE RIF: All. RdP 22LA0032198

OGGETTO: Allegato al RDP n° 22LA0032198

Denominazione del campione:

Codice EER dichiarato dal produttore/detentore:

Descrizione ciclo produttivo

Luogo di campionamento:

Punto di prelievo:

Tecnici esecutori del prelievo:

Metodo del campionamento:

Campione Rifiuti solidi - Caratterizzazione 1 (S1,S2,S3,S7)

17 05 04-terra e rocce, diverse da quelle di cui alla voce 17 05 03

Scavi per esecuzione del piano della caratterizzazione

Area di Proprietà Pubblica Sita In Via Berlinguer Loc. Stagno, Collesalvetti

(LI)

Area a Nord dell'Oleodotto

Personale ambiente s.p.a. - Raspolli-Borsacchi

UNI 10802:2013 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Ai sensi della Decisione CEE/CEEA/CECA n° 532 del 03/05/2000 e ss.mm.ii. come modificata dalla Decisione CEE/CEEA/CECA 18/12/2014 n° 955 e ai sensi della direttiva 2008/98/CE, come modificata Regolamento CEE/UE 18/12/2014 n° 1357 e dal Regolamento (UE) 2017/997:

- L'iscrizione di una voce nell'elenco armonizzato di rifiuti contrassegnata come pericolosa, con un riferimento specifico o generico a «sostanze pericolose», è opportuna solo quando questo rifiuto contiene sostanze pericolose pertinenti che determinano nel rifiuto una o più delle caratteristiche di pericolo da HP 1 a HP 8 e/o da HP 10 a HP 15 di cui all'allegato III della direttiva 2008/98/CE come modificato dal Regolamento CEE/UE 18/12/2014 n° 1357 e dal Regolamento (UE) 2017/997. La valutazione della caratteristica di pericolo HP 9 «infettivo» deve essere effettuata conformemente alla legislazione pertinente o ai documenti di riferimento negli Stati membri.
- Una caratteristica di pericolo può essere valutata utilizzando la concentrazione di sostanze nei rifiuti, come specificato nell'allegato III della direttiva 2008/98/CE come modificato dal Regolamento CEE/UE 18/12/2014 n° 1357 o, se non diversamente specificato nel regolamento (CE) n. 1272/2008 e ss.mm.ii., eseguendo una prova conformemente al regolamento (CE) n. 440/2008 e ss.mm.ii. o altri metodi di prova e linee guida riconosciuti a livello internazionale, tenendo conto dell'articolo 7 del regolamento (CE) n. 1272/2008 e ss.mm.ii. per quanto riguarda la sperimentazione animale e umana. Nel caso in cui il laboratorio valuti una caratteristica di pericolo attraverso la concentrazione di sostanze nei rifiuti, questa viene valutata senza considerare le incertezze di misura.

Per la contaminazione da metalli: Rifiuto a composizione non nota. Applicazione del principio di precauzione con attribuzione della concentrazione del metallo al sale realisticamente presente caratterizzato dai codici di indicazione di pericolo con i limiti più restrittivi, senza bilancio con la concentrazione degli anioni e con il calcolo stechiometrico per il passaggio dalla concentrazione del metallo a quella del sale.

Inoltre, fermo restando quanto sopra indicato, e visto il D.lgs 152/06 e ss.mm.ii., il processo che porta a valutare ed eventualmente ad attribuire una caratteristica di pericolo ad un rifiuto è stato altresì effettuato ai sensi del DL direttoriale MITE 9 agosto 2021, n.47 - approvazione delle Linee guida sulla classificazione dei rifiuti (SNPA 105/2021).

Inoltre, ai sensi della legge n°13 del 27/02/2009 e del DM 07/11/2008, come modificato dal DM 04/08/2010:

"La classificazione dei rifiuti contenenti idrocarburi ai fini dell'assegnazione della caratteristica di pericolo, «cancerogeno», si effettua conformemente a quanto indicato per gli idrocarburi totali nella Tabella A2 dell'Allegato A al decreto del Ministro dell'ambiente e della tutela del territorio e del mare 7 novembre 2008, pubblicato nella Gazzetta Ufficiale n. 284 del 4 dicembre 2008. "

"In attesa di specifiche metodiche di riferimento, gli Idrocarburi Totali (THC) sono da considerare come sommatoria di Idrocarburi leggeri (C<12) e di Idrocarburi pesanti (C>12). Ai fini della classificazione del materiale contenente "Idrocarburi Totali" (THC) di origine non nota, si fa riferimento al parere espresso dall'Istituto Superiore di Sanità il 5 luglio 2006, prot. n. 0036565 sulle "procedure di classificazione di rifiuti contenenti idrocarburi", e successivi aggiornamenti a seguito dell'adeguamento al progresso tecnico (ATP) in materia di classificazione, di imballaggio e di etichettatura delle sostanze pericolose ai sensi della direttiva 67/548/CEE, precisando che, al solo fine della classificazione quale rifiuto, l'analisi deve fare riferimento al tal quale".

In riferimento al RdP in oggetto, il rifiuto di cui il campione è rappresentativo, in relazione ai parametri analizzati su richiesta del cliente e alle informazioni fornite dal produttore, ai sensi del Regolamento (UE) n° 1357/2014 della Commissione del 18 dicembre 2014 che sostituisce l'allegato III della direttiva 2008/98/CE del Parlamento Europeo e della Decisione CEE/CEEA/CECA 18/12/2014 n° 955 e del Regolamento (UE) 2017/997, risulta essere un **rifiuto speciale non pericoloso**.

Secondo quanto dichiarato dal Produttore il rifiuto è identificato con Codice EER: 17 05 04-terra e rocce, diverse da quelle di cui alla voce 17 05 03.

Nazzano Carrara, 04 luglio 2022 FILE RIF: All. RdP 22LA0032198

OGGETTO: Allegato al RDP n° 22LA0032198

Classificazione in base al D.lgs 13/01/2003 n°36 Attuazione della direttiva 1999/31/Ce – Discariche di rifiuti e ss.mm.ii

Articolo 7 – Quarter del D.lgs 13/01/2003 n°36 e ss.mm.ii

Comma 1:

 Il campione sottoposto a test di cessione in acqua deionizzata presenta un eluato non conforme alle concentrazioni fissate in tabella 2 Allegato 4 del D.lgs 13/01/2003 n°36 e ss.mm.ii. (Limiti di concentrazione nell'eluato per l'accettabilità in discariche per rifiuti inerti).

Nome	Unità	Conc. Camp.	Lim. Max
Solfati	mg/l	160	100
TDS (solidi disciolti totali)	mg/l	480	400

• I contaminanti organici richiesti presentano concentrazioni **superiori** a quelle indicate nella tabella 4 del D.lgs 13/01/2003 n°36 e ss.mm.ii (Limiti di accettabilità per i composti organici in discariche per rifiuti inerti).

Nome	Unità	Conc. Camp.	Lim. Max
Carbonio organico totale (TOC)	mg/Kg	59000	30000
B.T.E.X.	mg/Kg	< 1.5	6
Oli minerali (da C10 a C40)	mg/Kg	820	500

Comma 2:

- Contengono PCB (Policlorobifenili) come definiti dal decreto legislativo 22 maggio 1999, n. 209 in concentrazioni inferiori a 1 mg/kg, limite riportato nella tabella 3 Allegato 4 del D.lgs 13/01/2003 n°36 e ss.mm.ii.
- Contengono diossine o furani calcolati secondo i fattori di equivalenza di cui alla tabella 1B Allegato 3 del D.lgs 13/01/2003 n°36 e ss.mm.ii. (Elenco delle PCDD e dei PCDF e rispettivi fattori di equivalenza da prendere in considerazione ai fini dell'ammissibilità in discarica) in concentrazioni inferiori a 0.0001 mg/kg, limite riportato nella tabella 3 Allegato 4 del D.lgs 13/01/2003 n°36 e ss.mm.ii.
- Gli inquinanti organici persistenti, di cui al Regolamento (UE) 2019/1021, non sono stati richiesti.

Il rifiuto, di cui il campione è rappresentativo, in relazione ai parametri analizzati su richiesta del cliente, al ciclo produttivo dichiarato dallo stesso, alle informazioni fornite dal produttore e considerandone la tipologia, risulta **non smaltibile in discarica per rifiuti inerti**, salvo deroghe da Autorizzazione.

Nazzano Carrara, 04 luglio 2022 FILE RIF: All. RdP 22LA0032198

OGGETTO: Allegato al RDP n° 22LA0032198

Classificazione in base al D.lgs 13/01/2003 n°36 Attuazione della direttiva 1999/31/Ce – Discariche di rifiuti e ss.mm.ii.

Articolo 7 - Quinquies del D.lgs 13/01/2003 n°36 e ss.mm.ii

Comma 4:

- Presenta una percentuale di sostanza secca ≥ 25% pertanto è conforme alle disposizioni previste nella tabella 5-bis Allegato
 4 del D.lgs 13/01/2003 n°36 e ss.mm.ii. (Limiti di accettabilità dei rifiuti non pericolosi).
- Il campione sottoposto a test di cessione in acqua deionizzata presenta un eluato **conforme** alle concentrazioni fissate in tabella 5 Allegato 4 del D.lgs 13/01/2003 n°36 e ss.mm.ii. (Limiti di concentrazione nell'eluato per l'accettabilità in discariche per rifiuti non pericolosi).
- Contengono PCB (Policlorobifenili) come definiti dal decreto legislativo 22 maggio 1999, n. 209 in concentrazioni inferiori a 10 mg/kg, limite riportato nella tabella 5-bis Allegato 4 del D.lgs 13/01/2003 n°36 e ss.mm.ii.
- Contengono diossine o furani calcolati secondo i fattori di equivalenza di cui alla tabella 1B Allegato 3 del D.lgs 13/01/2003 n°36 e ss.mm.ii. (Elenco delle PCDD e dei PCDF e rispettivi fattori di equivalenza da prendere in considerazione ai fini dell'ammissibilità in discarica) in concentrazioni inferiori a 0.002 mg/kg, limite riportato nella tabella 5-bis Allegato 4 del D.lgs 13/01/2003 n°36 e ss.mm.ii.
- Gli inquinanti organici persistenti, di cui al Regolamento (UE) 2019/1021 non sono stati richiesti.

Il rifiuto, di cui il campione è rappresentativo, in relazione ai parametri analizzati su richiesta del cliente, al ciclo produttivo dichiarato dallo stesso, alle informazioni fornite dal produttore e considerandone la tipologia, risulta **smaltibile in discarica per rifiuti non pericolosi**, salvo deroghe da Autorizzazione.

Firmato digitalmente da:

Responsabile Chimico

Dott. Fallica Mauro Placido

N° 1219 SEZ. A - Ordine Interprovinciale dei Chimici e dei Fisici del Veneto PD RO VI VR

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it- www.agrolab.it

Rapporto di prova n°: 22LA0032199 del 04/07/2022

Spett. Ambiente s.p.a. Via Frassina, 21 54033 Nazzano - Carrara (MS)

Denominazione del Campione: Campione Rifiuti solidi - Caratterizzazione 2

Codice EER dichiarato dal Produttore/Detentore: 17 05 04 - terra e rocce, diverse da quelle di cui alla voce 17 05 03

Luogo di campionamento: Area di Proprietà Pubblica Sita In Via Berlinguer Loc. Stagno, Collesalvetti (LI)

Punto di prelievo: Area a Sud dell'Oleodotto

Prelevato da: Personale ambiente s.p.a. - Raspolli-Borsacchi

Metodo di Campionamento: UNI 10802:2013 - Prelievo effettuato a cura di ambiente s.p.a.(*)

Verbale di prelievo n°: RIF-COLLE2

Prelevato il: 20/05/2022 Data Accettazione: 24/05/2022

Data inizio analisi: 06/06/2022 Data fine analisi: 16/06/2022

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	
pH CNR IRSA 1 Q 64 Vol 3 1985 + APAT CNR IRSA 20	upH 060 Man 29 2003	8.4	±0,2	
Residuo secco a 105°C UNI EN 14346:2007	%p/p	87	±4	
Residuo al Fuoco a 550°C (ROI) UNI EN 15169:2007	% p/p	82	±7	
Carbonio organico totale (TOC) UNI EN 13137:2002	% p/p	0.95	±0,12	
Cobalto UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	16	±6	
Cadmio UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	< 4.2		
Cromo (VI) EPA 3060A 1996 + EPA 7199 1996	mg/kg	0.27	±0,08	
Cromo totale UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	70	±25	
Antimonio UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	< 4.2		
Arsenico UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	11	±4	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0032199 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	
Bario UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	130	±47	
Berillio UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	< 4.2		
Boro UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	9.2	±3,2	
Selenio UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	< 4.2		
Piombo <i>UNI EN 13657:2004 + UNI EN ISO 11885:2009</i>	mg/kg	46	±16	
* Mercurio UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	0.58	±0,20	
Molibdeno UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	< 4.2		
Nichel UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	100	±36	
Stagno UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	19	±7	
Tallio UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	< 4.2		
* Tellurio UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	< 4.2		
Rame UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	320	±110	
Vanadio UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	27	±10	
Zinco UNI EN 13657:2004 + UNI EN ISO 11885:2009	mg/kg	270	±94	
Naftalene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.040		
Indeno (1,2,3 - c,d) pirene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	0.24	±0,08	
Pirene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	0.62	±0,22	
Benzo (a) antracene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	0.41	±0,14	
Benzo (a) pirene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	0.49	±0,17	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0032199 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza	
Benzo (b) fluorantene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	0.28	±0,10	
Benzo (e) pirene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	0.30	±0,11	
Benzo (g,h,i) perilene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	0.27	±0,10	
Benzo (j) fluorantene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	0.35	±0,12	
Benzo (k) fluorantene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	0.25	±0,09	
Antracene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	0.20	±0,07	
Acenaftene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	0.065	±0,023	
Acenaftilene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.040		
Dibenzo (a,e) pirene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	0.058	±0,020	
Dibenzo (a,h) antracene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.040		
Dibenzo (a,h) pirene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.040		
Dibenzo (a,i) pirene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	0.11	±0,04	
Dibenzo (a,l) pirene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.040		
Crisene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	0.47	±0,17	
Fenantrene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	0.12	±0,04	
Fluorantene <i>EPA</i> 3550C 2007 + <i>EPA</i> 8270E 2018	mg/kg	0.70	±0,24	
Fluorene EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.040		
Solventi organo alogenati EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.004		
* Solventi organici (da Calcolo) EPA 5021A 2014 + EPA 8260D 2018	mg/kg	0.0011	±0,0003	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0032199 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza
Benzene EPA 5021A 2014 + EPA 8260D 2018	mg/kg	0.0011	±0,0003
Isopropilbenzene EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.0038	
Dipentene EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.075	
1,3 - Butadiene EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.0075	
Etilbenzene EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.0038	
Stirene EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.0038	
Toluene EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.0038	
Xilene EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.0075	
Tetraclorometano EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.0038	
Esaclorobutadiene <i>EPA 5021A 2014 + EPA 8260D 2018</i>	mg/kg	< 0.0038	
1,1,1 - Tricloroetano EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.0038	
* 1,1-dicloro-1-fluoroetano EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.0038	
Bromometano EPA 5021A 2014 + EPA 8260D 2018	mg/kg	< 0.0038	
* Somm. PCDD, PCDF conversione T.E. EPA 8280B 2007 + DM 27/09/2010 GU N°281 01/12	mg WHO-TEQ/kg 2/2010	< 0.0001	
Sommatoria PCB EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB28 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB52 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB77 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB81 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	

Via Frassina, 21 - Carrara (MS) - 54033

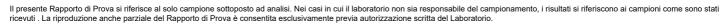
Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0032199 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza
PCB95 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB99 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB101 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB105 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB110 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB114 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB118 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB123 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB126 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB128 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB138 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB146 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB149 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB151 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB153 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB156 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB157 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB167 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB169 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	

Via Frassina, 21 - Carrara (MS) - 54033


Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0032199 del 04/07/2022

Parametro Metodo	U.M.	Risultato	Incertezza
PCB170 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB177 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB180 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB183 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB187 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCB189 EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.008	
PCT EPA 3550C 2007 + EPA 8270E 2018	mg/kg	< 0.32	
Idrocarburi C<=12 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0.18	
Idrocarburi C>12 <i>UNI EN 140</i> 39:2005	mg/kg	160	±45
Idrocarburi C10-C40 <i>UNI EN 1403</i> 9:2005	mg/kg	220	±61
Idrocarburi Alifatici C5-C8 EPA 5021A 2014 + EPA 8015C 2007	mg/kg	< 0.13	
Amianto (ricerca qualitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 3	Presente-Assente	Assente	
* Amianto (ricerca quantitativa) DM 06/09/1994 GU n° 288 10/12/1994 All 1	mg/kg	< 1000	

Via Frassina, 21 - Carrara (MS) - 54033

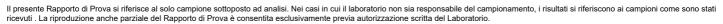
Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0032199 del 04/07/2022

eluato UNI 10802:2013	3 DM 05/0	2/1998			
Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
Residuo secco a 105°C UNI EN 14346:2007	%p/p	87	±4		
Conducibilità UNI EN 12457-2:2004 + UNI EN 27888:1995	μS/cm	628	±38		
Nitrati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	6.7	±0,7	50	
Fluoruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	0.99	±0,11	1,5	
Cloruri UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	7.9	±0,9	100	
Cianuri UNI EN 12457-2:2004 + APAT CNR IRSA 4070 Man 2	μg/l 29 2003	< 10		50	
Bario UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	0.065	±0,013	1	
Rame UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	0.0084	±0,0017	0,05	
Zinco UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	mg/l	< 0.020		3	
Berillio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0.40		10	
Cobalto UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 5.0		250	
Nichel UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 2.0		10	
Vanadio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 5.0		250	
Arsenico UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	1.5	±0,3	50	
Cadmio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0.50		5	
Cromo totale UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 5.0		50	
Piombo UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 1.0		50	
Selenio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	1.1	±0,2	10	

Via Frassina, 21 - Carrara (MS) - 54033


Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0032199 del 04/07/2022

	eluato UNI 10802:2013	DM 05/0	2/1998			
	Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
	Mercurio UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016	μg/l	< 0.10		1	
*	Amianto (ricerca quantitativa) DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI EN	mg/l I 12457-2:20	< 10 004 + DM 06/09/1994	GU n° 288 10/12/	30 1994 All 2A	
	Richiesta chimica di ossigeno (COD) UNI EN 12457-2:2004 + ISO 15705:2002	mg/l	18	±4	30	
*	pH DM 05/02/1998 GU SO n° 88 16/04/1998 All 3 + UNI El	upH V 12457-2:2	7.72 004 + APAT CNR IRS	±0,20 A 2060 Man 29 2	5,5÷12 003	

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

Your labs. Your service.

segue Rapporto di prova nº: 22LA0032199 del 04/07/2022

eluato UNI 10802:2013 DLgs 13/01/2003 **Parametro** D.Lgs n°36 del 13/01/03 e ss.mm.ii. U.M. Risultato Incertezza Metodo tab. 2 tab. 5 tab. 6 Residuo secco a 105°C %p/p 87 ±4 UNI EN 14346:2007 upH 7.7 ±0,2 UNI EN 12457-2:2004 + ISO 10523:2008 Conducibilità uS/cm 628.0 ±37,7 UNI EN 12457-2:2004 + UNI EN 27888:1995 Arsenico mg/l 0.0015 ±0.0003 0.05 0.2 2.5 UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016 mg/l 0.065 ±0,013 2 10 30 UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016 < 0.00050 0,004 0,1 0.5 mg/l UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016 Cromo tot. mg/l < 0.0050 0,05 1 7 UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016 5 10 mg/l 0.0084 ±0,0017 0,2 UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016 Mercurio mg/l < 0.00010 0,001 0,02 0.2 UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016 0.021 ±0,004 0,05 1 3 Molibdeno mg/l UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016 < 0.0020 0,04 1 4 Nichel mg/l UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016 0.05 5 < 0.0010 Piombo ma/l 1 UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016 Antimonio mg/l 0.0025 ±0.0005 0,006 0,07 0.5 UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016 Selenio mg/l 0.0011 ±0.0002 0.01 0.05 0.7 UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016 5 20 7inco mg/l < 0.020 0.4 UNI EN 12457-2:2004 + UNI EN ISO 17294-2:2016 Cloruri mg/l 7.9 ±0,9 80 2500 2500 UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009 Fluoruri mg/l 0.99 ±0,11 1 15 50 UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009 Indice fenolo mg/l < 0.010 0,1 UNI EN 12457-2:2004 + ISO 6439:1990

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova nº: 22LA0032199 del 04/07/2022

eluato UNI 10802:20							
Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.Lgs n°36 tab. 2	del 13/01/03 e tab. 5	ss.mm.ii. tab. 6	
TDS (solidi disciolti totali) UNI EN 12457-2:2004 + UNI EN 15216:2008	mg/l	▶ 660	±140	400	10000	10000	
DOC (carbonio organico disciolto) UNI EN 12457-2:2004 + UNI EN 1484:1999	mg/l	3.6	±0,7	50	100	100	

eluato UNI 10802:2013 DM 05/02/1998 - DL1 - First dilution sample

Parametro Metodo	U.M.	Risultato	Incertezza	D.M. 05/02/1998 Allegato 3	
Solfati UNI FN 12457-2:2004 + UNI FN ISO 10304-1:2009	mg/l	240	±27	250	

eluato UNI 10802:2013 DLgs 13/01/2003 - DL2 - Second dilution sample

Parametro Metodo	U.M.		Risultato	Incertezza	D.Lgs n°36 tab. 2	del 13/01/03 e tab. 5	e ss.mm.ii. tab. 6	
Solfati UNI EN 12457-2:2004 + UNI EN ISO 10304-1:2009	mg/l	•	240	±27	100	5000	5000	

(*) - Prova non accreditata ACCREDIA

▶ Valore uguale o superiore al limite indicato per il parametro

Limiti:

D.Lgs n° 36 del 13/01/2003 e ss.mm.ii.:

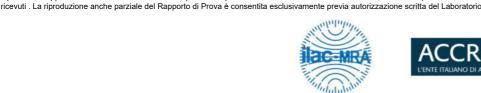
tab.2: Tabella 2 del Decreto Legislativo n° 36 del 13/01/2003 e ss.mm.ii.: Limiti di concentrazione nell'eluato per l'accettabilità in discariche per rifiuti inerti

tab.5: Tabella 5 del Decreto Legislativo n° 36 del 13/01/2003 e ss.mm.ii.: Limiti di concentrazione nell'eluato per l'accettabilità in discariche per rifiuti non pericolosi

tab.ổ: Tabella 6 del Decreto Legislativo n° 36 del 13/01/2003 e ss.mm.ii.: Limiti di concentrazione nell'eluato per l'accettabilità in discariche per rifiuti pericolosi

DM 05/02/98: Allegato 3 al Decreto Ministeriale del 05/02/1998 Individuazione dei rifiuti non pericolosi sottoposti alle procedure semplificate di recupero ai sensi degli articoli 31 e 33 del decreto legislativo 5 febbraio 1997, n. 22 Concentrazioni limite.

Agrolab Ambiente non è responsabile della fase di campionamento; i risultati delle prove sono stati ottenuti sulla base dei dati dichiarati


Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2. Ove non espressamente indicato, il recupero è da intendersi compreso all'interno dei limiti di accettabilità e non è utilizzato nei calcoli. Qualora presente, l'Incertezza associata al risultato non comprende il contributo dell'incertezza associata al campionamento.

La regola decisionale applicata alle eventuali valutazioni di conformità, in mancanza di richieste diverse da parte del committente o salvo indicazioni di legge o normativa cogente, non considera l'incertezza di misura.

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Il laboratorio declina ogni responsabilità circa la validità dei risultati analitici quando il Cliente richiede che un oggetto sia sottoposto a prova pur riconoscendo la presenza di uno scostamento rispetto alle condizioni specificate dal laboratorio.

Il laboratorio, se non diversamente specificato, riporta i valori ottenuti al di sotto del limite di rilevabilità come risultati inferiori al relativo RL.

Via Frassina, 21 - Carrara (MS) - 54033

Tel. +39 0585 1693231

PEC: agrolabambiente@messaggipec.it - www.agrolab.it

segue Rapporto di prova n°: 22LA0032199 del 04/07/2022

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate sommando tutti gli addendi valorizzati e considerando pari a zero il contributo di quelli inferiori al rispettivo RL. Qualora tutti gli addendi dovessero essere non valorizzati, la sommatoria risulterà inferiore al RL più alto tra quelli utilizzati per i singoli addendi

La preparazione delle aliquote di prova del campione è stata eseguita secondo quanto richiesto dalla norma UNI EN 15002 (prova non accreditata). La riduzione granulometrica è stata effettuata tramite Mulino a mascelle.

La successiva fase di omogenizzazione è stata effettuata conformemente a quanto previsto dalla sequenza di operazioni (flow sheet) a pag 11 della norma tecnica UNI EN 15002 (prova non accreditata).

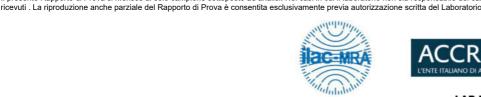
Prova di eluizione eseguita in data 07/06/2022 in contenitore di polietilene della capacità di 1 litro.

Dispositivo di miscelazione a rovesciamento (10 giri/min). Separazione liquido solido mediante filtrazione sottovuoto con filtro in Nitrato di Cellulosa (0,45 µm).

Il campione è stato passato attraverso un setaccio a 4 mm. La conducibilità viene riportata alla temperatura di 25°C.

Temperatura eluato: 22 C°.

Massa campione di laboratorio: 104 g. Volume dell'agente liscivante 0.886 l.


Rapporto del contenuto di umidità MC: 87 %.

Peso campione (g): 300. Frazione non macinabile: 0 %. Frazione eccedente i 4 mm: 3.67 %.

File firmato digitalmente.

Responsabile Chimico
Dott. Fallica Mauro Placido
N. 1219 SEZ. A - ORDINE INTERPROVINCIALE DEI CHIMICI E
DEI FISICI DEL VENETO PD RO VI VR

Fine del rapporto di prova n° 22LA0032199

Il presente Rapporto di Prova si riferisce al solo campione sottoposto ad analisi. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati

Campione Rifiuti solidi - Caratterizzazione 2

Scavi per esecuzione del piano della caratterizzazione

Nazzano Carrara, 04 luglio 2022 FILE RIF: All. RdP 22LA0032199

OGGETTO: Allegato al RDP n° 22LA0032199

Denominazione del campione:

Codice EER dichiarato dal produttore/detentore:

Descrizione ciclo produttivo

Luogo di campionamento:

Tecnici esecutori del prelievo: Personale ambiente s.p.a. - Raspolli-Borsacchi

Metodo del campionamento:

Punto di prelievo: Area a Sud dell'Oleodotto

UNI 10802:2013 - Prelievo effettuato a cura di ambiente s.p.a.(*)

17 05 04-terra e rocce, diverse da quelle di cui alla voce 17 05 03

Area di Proprietà Pubblica Sita In Via Berlinguer Loc. Stagno, Collesalvetti

Ai sensi della Decisione CEE/CEEA/CECA n° 532 del 03/05/2000 e ss.mm.ii. come modificata dalla Decisione CEE/CEEA/CECA 18/12/2014 n° 955 e ai sensi della direttiva 2008/98/CE, come modificata Regolamento CEE/UE 18/12/2014 n° 1357 e dal Regolamento (UE) 2017/997:

- L'iscrizione di una voce nell'elenco armonizzato di rifiuti contrassegnata come pericolosa, con un riferimento specifico o generico a «sostanze pericolose», è opportuna solo quando questo rifiuto contiene sostanze pericolose pertinenti che determinano nel rifiuto una o più delle caratteristiche di pericolo da HP 1 a HP 8 e/o da HP 10 a HP 15 di cui all'allegato III della direttiva 2008/98/CE come modificato dal Regolamento CEE/UE 18/12/2014 n° 1357 e dal Regolamento (UE) 2017/997. La valutazione della caratteristica di pericolo HP 9 «infettivo» deve essere effettuata conformemente alla legislazione pertinente o ai documenti di riferimento negli Stati membri.
- Una caratteristica di pericolo può essere valutata utilizzando la concentrazione di sostanze nei rifiuti, come specificato nell'allegato III della direttiva 2008/98/CE come modificato dal Regolamento CEE/UE 18/12/2014 n° 1357 o, se non diversamente specificato nel regolamento (CE) n. 1272/2008 e ss.mm.ii., eseguendo una prova conformemente al regolamento (CE) n. 440/2008 e ss.mm.ii. o altri metodi di prova e linee guida riconosciuti a livello internazionale, tenendo conto dell'articolo 7 del regolamento (CE) n. 1272/2008 e ss.mm.ii. per quanto riguarda la sperimentazione animale e umana. Nel caso in cui il laboratorio valuti una caratteristica di pericolo attraverso la concentrazione di sostanze nei rifiuti, questa viene valutata senza considerare le incertezze di misura.

Per la contaminazione da metalli: Rifiuto a composizione non nota. Applicazione del principio di precauzione con attribuzione della concentrazione del metallo al sale realisticamente presente caratterizzato dai codici di indicazione di pericolo con i limiti più restrittivi, senza bilancio con la concentrazione degli anioni e con il calcolo stechiometrico per il passaggio dalla concentrazione del metallo a quella del sale.

Inoltre, fermo restando quanto sopra indicato, e visto il D.lgs 152/06 e ss.mm.ii., il processo che porta a valutare ed eventualmente ad attribuire una caratteristica di pericolo ad un rifiuto è stato altresì effettuato ai sensi del DL direttoriale MITE 9 agosto 2021, n.47 approvazione delle Linee guida sulla classificazione dei rifiuti (SNPA 105/2021).

Inoltre, ai sensi della legge n°13 del 27/02/2009 e del DM 07/11/2008, come modificato dal DM 04/08/2010:

"La classificazione dei rifiuti contenenti idrocarburi ai fini dell'assegnazione della caratteristica di pericolo, «cancerogeno», si effettua conformemente a quanto indicato per gli idrocarburi totali nella Tabella A2 dell'Allegato A al decreto del Ministro dell'ambiente e della tutela del territorio e del mare 7 novembre 2008, pubblicato nella Gazzetta Ufficiale n. 284 del 4 dicembre 2008. "

"In attesa di specifiche metodiche di riferimento, gli Idrocarburi Totali (THC) sono da considerare come sommatoria di Idrocarburi leggeri (C<12) e di Idrocarburi pesanti (C>12). Ai fini della classificazione del materiale contenente "Idrocarburi Totali" (THC) di origine non nota, si fa riferimento al parere espresso dall'Istituto Superiore di Sanità il 5 luglio 2006, prot. n. 0036565 sulle "procedure di classificazione di rifiuti contenenti idrocarburi", e successivi aggiornamenti a seguito dell'adeguamento al progresso tecnico (ATP) in materia di classificazione, di imballaggio e di etichettatura delle sostanze pericolose ai sensi della direttiva 67/548/CEE, precisando che, al solo fine della classificazione quale rifiuto, l'analisi deve fare riferimento al tal quale".

In riferimento al RdP in oggetto, il rifiuto di cui il campione è rappresentativo, in relazione ai parametri analizzati su richiesta del cliente e alle informazioni fornite dal produttore, ai sensi del Regolamento (UE) nº 1357/2014 della Commissione del 18 dicembre 2014 che sostituisce l'allegato III della direttiva 2008/98/CE del Parlamento Europeo e della Decisione CEE/CEEA/CECA 18/12/2014 n° 955 e del Regolamento (UE) 2017/997, risulta essere un rifiuto speciale non pericoloso.

Secondo quanto dichiarato dal Produttore il rifiuto è identificato con Codice EER: 17 05 04-terra e rocce, diverse da quelle di cui alla voce 17 05 03.

Nazzano Carrara, 04 luglio 2022 FILE RIF: All. RdP 22LA0032199

OGGETTO: Allegato al RDP n° 22LA0032199

Classificazione in base al D.lgs 13/01/2003 n°36 Attuazione della direttiva 1999/31/Ce – Discariche di rifiuti e ss.mm.ii

Articolo 7 – Quarter del D.lgs 13/01/2003 n°36 e ss.mm.ii

Comma 1:

• Il campione sottoposto a test di cessione in acqua deionizzata presenta un eluato **non conforme** alle concentrazioni fissate in tabella 2 Allegato 4 del D.lgs 13/01/2003 n°36 e ss.mm.ii. (Limiti di concentrazione nell'eluato per l'accettabilità in discariche per rifiuti inerti).

Nome	Unità	Conc. Camp.	Lim. Max	
Solfati	mg/l	240	100	
TDS (solidi disciolti totali)	mg/l	660	400	

• I contaminanti organici richiesti presentano concentrazioni **inferiori** a quelle indicate nella tabella 4 del D.lgs 13/01/2003 n°36 e ss.mm.ii (Limiti di accettabilità per i composti organici in discariche per rifiuti inerti).

Nome	Unità	Conc. Camp.	Lim. Max
Carbonio organico totale (TOC)	mg/Kg	9500	30000
B.T.E.X.	mg/Kg	< 1.5	6
Oli minerali (da C10 a C40)	mg/Kg	220	500

Comma 2:

- Contengono PCB (Policlorobifenili) come definiti dal decreto legislativo 22 maggio 1999, n. 209 in concentrazioni **inferiori** a 1 mg/kg, limite riportato nella tabella 3 Allegato 4 del D.lgs 13/01/2003 n°36 e ss.mm.ii.
- Contengono diossine o furani calcolati secondo i fattori di equivalenza di cui alla tabella 1B Allegato 3 del D.lgs 13/01/2003 n°36 e ss.mm.ii. (Elenco delle PCDD e dei PCDF e rispettivi fattori di equivalenza da prendere in considerazione ai fini dell'ammissibilità in discarica) in concentrazioni inferiori a 0.0001 mg/kg, limite riportato nella tabella 3 Allegato 4 del D.lgs 13/01/2003 n°36 e ss.mm.ii.
- Gli inquinanti organici persistenti, di cui al Regolamento (UE) 2019/1021, non sono stati richiesti.

Il rifiuto, di cui il campione è rappresentativo, in relazione ai parametri analizzati su richiesta del cliente, al ciclo produttivo dichiarato dallo stesso, alle informazioni fornite dal produttore e considerandone la tipologia, risulta **non smaltibile in discarica per rifiuti inerti**, salvo deroghe da Autorizzazione.

Nazzano Carrara, 04 luglio 2022 FILE RIF: All. RdP 22LA0032199

OGGETTO: Allegato al RDP n° 22LA0032199

Classificazione in base al D.lgs 13/01/2003 n°36 Attuazione della direttiva 1999/31/Ce – Discariche di rifiuti e ss.mm.ii.

Articolo 7 - Quinquies del D.lgs 13/01/2003 n°36 e ss.mm.ii

Comma 4:

- Presenta una percentuale di sostanza secca ≥ 25% pertanto è conforme alle disposizioni previste nella tabella 5-bis Allegato
 4 del D.lgs 13/01/2003 n°36 e ss.mm.ii. (Limiti di accettabilità dei rifiuti non pericolosi).
- Il campione sottoposto a test di cessione in acqua deionizzata presenta un eluato **conforme** alle concentrazioni fissate in tabella 5 Allegato 4 del D.lgs 13/01/2003 n°36 e ss.mm.ii. (Limiti di concentrazione nell'eluato per l'accettabilità in discariche per rifiuti non pericolosi).
- Contengono PCB (Policlorobifenili) come definiti dal decreto legislativo 22 maggio 1999, n. 209 in concentrazioni inferiori a 10 mg/kg, limite riportato nella tabella 5-bis Allegato 4 del D.lgs 13/01/2003 n°36 e ss.mm.ii.
- Contengono diossine o furani calcolati secondo i fattori di equivalenza di cui alla tabella 1B Allegato 3 del D.lgs 13/01/2003 n°36 e ss.mm.ii. (Elenco delle PCDD e dei PCDF e rispettivi fattori di equivalenza da prendere in considerazione ai fini dell'ammissibilità in discarica) in concentrazioni inferiori a 0.002 mg/kg, limite riportato nella tabella 5-bis Allegato 4 del D.lgs 13/01/2003 n°36 e ss.mm.ii.
- Gli inquinanti organici persistenti, di cui al Regolamento (UE) 2019/1021 non sono stati richiesti.

Il rifiuto, di cui il campione è rappresentativo, in relazione ai parametri analizzati su richiesta del cliente, al ciclo produttivo dichiarato dallo stesso, alle informazioni fornite dal produttore e considerandone la tipologia, risulta **smaltibile in discarica per rifiuti non pericolosi**, salvo deroghe da Autorizzazione.

Firmato digitalmente da:

Responsabile Chimico

Dott. Fallica Mauro Placido

N° 1219 SEZ. A - Ordine Interprovinciale dei Chimici e dei Fisici del Veneto PD RO VI VR