COMUNE DI COLLESALVETTI (LI)

Analisi di Rischio sanitaria e ambientale

Pista Ciclabile Ivo Mancini Via Berlinguer, Loc. Stagno SITO LI 1148

(ai sensi del D. Lgs. 152/06 e ss.mm.ii.)

Marzo 2023

COMUNE DI COLLESALVETTI (LI)

Analisi di rischio Sanitaria Ambientale

Relazione Tecnica

Ordine: 2022001308

A cura:

Rev00	Marzo 2023	EMISSIONE	Francesco Tonazzini	Marco Raspolli	Paqui Moschini	
Indice di Rev. Data Descrizione Preparato Verificato Approvato					Approvato	
	Questo documento è di proprietà Ambiente spa che se ne riserva tutti i diritti.					

SOMMARIO

1.	PF	REMESSA	7
	1.1	CRONISTORIA E DOCUMENTAZIONE DI RIFERIMENTO	7
2.	IN	QUADRAMENTO GENERALE DEL SITO	9
	2.1	LOCALIZZAZIONE E PERIMETRAZIONE DEL SITO	9
	2.2	TIPOLOGIA DEL SITO E DESTINAZIONE D'USO	11
	2.3	ATTIVITÀ SVOLTE SUL SITO	12
3.	IN	QUADRAMENTO AMBIENTALE E TERRITORIALE DELL'AREA	13
	3.1	INQUADRAMENTO GEOLOGICO	13
	3.	1.1 Stratigrafia locale	14
	3.2	ÎNQUADRAMENTO IDROGEOLOGICO	14
	3.	2.1 Assetto idrogeologico locale	15
	3.3	INQUADRAMENTO CLIMATICO	17
4.	C	ARATTERIZZAZIONE DELLE MATRICI AMBIENTALI	21
	4.1	INDAGINI SCAVO OLEODOTTO (AGOSTO 2021)	21
	4.2	INDAGINI PIANO DI CARATTERIZZAZIONE (MARZO-APRILE 2022)	22
	4.	2.1 Determinazione delle granulometrie	23
	4.	2.2 Speciazione degli idrocarburi	24
	4.	2.3 Determinazione dei coefficienti di ripartizione e del foc	24
	4.	2.4 Rilievo freatimetrico	27
	4.	2.5 Riporti	28
	4.3	MONITORAGGIO DELLE ACQUE NOVEMBRE 2022	29
	4.	3.1 Risultati analitici delle Acque Sotterranee	29
	4.	3.2 Rilievo freatimetrico	29
5.	M	ODELLO CONCETTUALE DEL SITO (MCS)	31
	5 1	FONTI DDIMADIE E SECONDADIE DI CONTAMINAZIONE	21

	5.2 POSSIBILI VIE DI MIGRAZIONE	31
	5.3 BERSAGLI DELLA CONTAMINAZIONE	33
	5.4 SINTESI DEL MCS	34
6.	INDICAZIONI E RIFERIMENTI PER L'ESECUZIONE DI UN'ANALISI DI RISCHIO IGIE SANITARIA	
	6.1 PRESENTAZIONE DEL PROGRAMMA UTILIZZATO PER LO SVILUPPO DELL'ANALISI DI RISCHIO	37
	6.2 CRITERIO GENERALE PER IL CALCOLO DELLE CSR	38
7.	PARAMETRAZIONE DEL MODELLO CONCETTUALE DEL SITO PER L'ANALISI DI RISC	HIO40
	7.1 GEOMETRIA DELLE POTENZIALI SORGENTI DI CONTAMINAZIONE: SUOLO INSATURO SUPERFICIALE (SS)	41
	7.1.1 Delimitazione areale delle potenziali sorgenti di contaminazione del SS	
	7.1.2 Delimitazione verticale delle potenziali sorgenti di contaminazione del SS	
	7.1.3 Schematizzazione della potenziale sorgente nella direzione del vento e di falda	
	7.2 GEOMETRIA DELLE POTENZIALI SORGENTI DI CONTAMINAZIONE: SUOLO PROFONDO (SP)	42
	7.2.1 Delimitazione areale delle potenziali sorgenti di contaminazione nel SP	42
	7.2.2 Delimitazione verticale delle potenziali sorgenti di contaminazione nel SP	43
	7.2.3 Schematizzazione della potenziale sorgente nella direzione del vento e di falda	43
	7.3 GEOMETRIA DELLE POTENZIALI SORGENTI DI CONTAMINAZIONE: ACQUE SOTTERRANEE (GW)	43
	7.4 CONTAMINANTI DI INTERESSE	44
	7.4.1 Trattamento statistico del dato	44
	7.4.1 Concentrazione rappresentativa in sorgente	44
	7.4.1 Caratteristiche chimico-fisiche dei contaminati	46
	7.5 PARAMETRI SITO-SPECIFICI	46
	7.5.1 Tessitura rappresentativa	47
	7.5.2 Parametri della zona insatura	47
	7.5.3 Parametri della zona satura	49
	7.5.4 Parametri ambienti outdoor	51
	7.5.5 Parametri ambienti indoor	52
Ω	CALCOLO DELLE CSR SITO SPECIFICHE	52

	8.1	CSR A PROTEZIONE DELL'UOMO PER IL SUOLO SUPERFICIALE (SS)	.53
	8.2	CSR A PROTEZIONE DELL'UOMO PER IL SUOLO PROFONDO (SP)	.56
	8.1	CSR A PROTEZIONE DELLA RISORSA IDRICA (POC=0)	.56
9.		TTIVAZIONE DEL PERCORSO DI LISCIVIAZIONE PER LA STIMA DELL	
	9.1	SUOLO SUPERFICIALE (SS)	.57
	9.2	SUOLO PROFONDO (SP)	.58
10	. OE	BIETTIVI DI BONIFICA	.59
	10.1	SUOLO SUPERFICIALE (SS)	.59
	10.2	2 SUOLO PROFONDO (SP)	.60
11	. CC	ONCLUSIONI	.61
12	. GE	ESTIONE RIFIUTI	.64

ALLEGATI

Allegato 1: Dati Geognostici

Allegato 2: Risultati indagini – suolo e sottosuolo

Allegato 3: Risultati indagini – acque di falda

Allegato 4: Freatimetria marzo 2022

Allegato 5: Risultati indagini – test di cessione

Allegato 6: FOC LCL

Allegato 7: File Risk Net

TAVOLE

Tavola 1: Corografia

Tavola 2: Punti di indagine

Tavola 2b: Freatimetria novembre 2022

Tavola 3: Poligoni di Thiessen SS e SP

Tavola 4: Poligoni di Thiessen GW

Tavola 5: Superamenti CSC SS

Tavola 6: Superamenti CSC SP

Tavola 7: Superamenti CSC GW

Tavola 8: Schematizzazione sorgenti SS

Tavola 9: Schematizzazione sorgenti SP

Tavola 10: Superamenti CSR SS

Tavola 11: Superamenti CSR SP

Tavola 12: Superamenti CSR GW

Tavola 13: Punti oggetto di bonifica

1. PREMESSA

Il presente documento costituisce Analisi di Rischio Sito Specifica per il sito ricadente all'interno dell'area di proprietà del Comune di Collesalvetti, ubicata in Via Berlinguer loc. Stagno (Sito nel seguito). In occasione dei lavori di manutenzione delle barre dell'oleodotto di proprietà ENI eseguiti nel giugno 2021 (comunicazione di inizio lavori del 26/02/2021 prot.GOL/mao 53/2021) sono stati riscontrati superamenti delle concentrazioni soglia di contaminazione nei terreni campionati dalle pareti dello scavo realizzato per le opere di manutenzione. Il Comune di Collesalvetti, in qualità di "soggetto interessato non responsabile della contaminazione", proprietario dell'area in oggetto e responsabile della gestione del patrimonio pubblico, ai sensi del comma 2 dell'art.245 e ai sensi del comma 1 dell'art.242 del D.Lgs. 152/2006 e ss.mm.ii. del D.Lgs. 152/2006 e ss.mm.ii., ha comunicato agli EE.PP. il superamento della soglia di contaminazione per la "matrice suolo" con lettera di notifica trasmessa in data 01/06/2021.

I dati di base ambientali utilizzati per i modelli di rischio sono costituiti da quanto segue:

- Risultanze indagini scavo oleodotto eseguiti in contraddittorio con ARPAT In data 10 giugno 2021;
- risultanze delle Indagini di Caratterizzazione, svolte nel periodo dal 22 marzo all'11 aprile 2022:
- campagna di monitoraggio acque sotterranee eseguita nel mese di novembre 2022.

1.1 CRONISTORIA E DOCUMENTAZIONE DI RIFERIMENTO

- 26/02/2021 prot.GOL/mao 53/2021 ENI SpA comunicazione inizio lavori trivellazione controllata (TOC) di due tratti in parallelo degli oleodotti Livorno-Calenzano (FI) DN200 (8") Tronco Livorno-Grecciano:
- 21/04/2021 prot. 106N02/L-GEN/0683/21 Techfem, comunicazione di rinvenimento di materiale di natura differente rispetto alla matrice presente;
- 01/06/2021 prot. 10071 Comune di Collesalvetti, notifica ai sensi dell'art. 242 del D.Lgs. 152/06 e ss.mm.ii. Attuazione di misure di prevenzione;
- 31/05/2021 prot.GOL/mao 53/2021 ENI S.p.A. autorizzazione n.16/2020 del 30/11/2020 Comune di Collesalvetti –invio report di attività di campionamento e rapporti di prova
- 04/06/2021 Comune di Collesalvetti, notifica ai sensi dell'art. 242 del D.Lgs. 152/06 e ss.mm.ii.
 richiesta di campionamento in contraddittorio prima del tombamento dell'area di scavo per motivi di sicurezza al fine di evitare possibili manomissioni delle condotte in esercizio;

- 10/06/2021 esecuzione di campionamento in contraddittorio tra il Comune di Collesalvetti ed i tecnici del Dipartimento Arpat di Livorno (vedi Verbale di acquisizione in campo Arpat n.20210610-00613-1);
- 01/07/2021 Comune di Collesalvetti, trasmissione del report Piano della caratterizzazione;
- 14/07/2021 Azienda USL Toscana Nord-Ovest, parere in merito al PDC trasmesso; Regione Toscana, parere in merito al PDC trasmesso;
- 26/07/2021 Dipartimento Arpat Livorno, parere in merito al documento PDC trasmesso;
- 12/08/2021 Comune di Collesalvetti, trasmissione determina di approvazione del PDC n. 540 del 12/08/2021;
- 20/10/2021, Comune di Collesalvetti trasmissione del report di aggiornamento del Piano della Caratterizzazione;
- 10/03/2022 prot. 4848: Comunicazione inizio lavori Piano Caratterizzazione sito LI-1148, ubicato in via Berlinguer a Stagno (LI);
- 11/03/2022: richiesta picchettamento oleodotto Livorno -Calenzano (FI) DN 200 (8"), Tronco Livorno-Grecciano, nell'area della pista ciclistica Ivo Mancini sita in via Berlinguer a Stagno (LI).
- 05/07/2022: "Piano di Caratterizzazione ambientale" ambiente SpA;
- 02/09/2022: Nota tecnica ARPAT "Sito LI-1148, ubicato in via Berlinguer a Stagno, Collesalvetti
 (LI) Risultati del Piano di Caratterizzazione. Contributo istruttorio."
- 24/11/2022 esecuzione di campionamento in contraddittorio tra la Scrivente ed i tecnici del Dipartimento Arpat di Livorno (vedi Verbale di acquisizione in campo Arpat n.20221124-00613-1).

2. INQUADRAMENTO GENERALE DEL SITO

Per una descrizione più dettagliata del sito e del suo inquadramento si rimanda ai documenti pregressi già emessi e citati in Premessa.

2.1 LOCALIZZAZIONE E PERIMETRAZIONE DEL SITO

Il Sito è ubicato ad est del paese di Stagno all'interno della pianura posta a sud del canale scolmatore e compreso tra la raffineria ENI e la Via Aurelia ad una quota di circa 5,0m sul livello del mare (Figura 1). Si riporta in **Tavola 1** Corografia del Sito.

FIGURA 1: STRALCIO IMMAGINE DEL SITO IN OGGETTO. FONTE: GOOGLE EARTH (CERCHIO DI COLORE ROSSO)

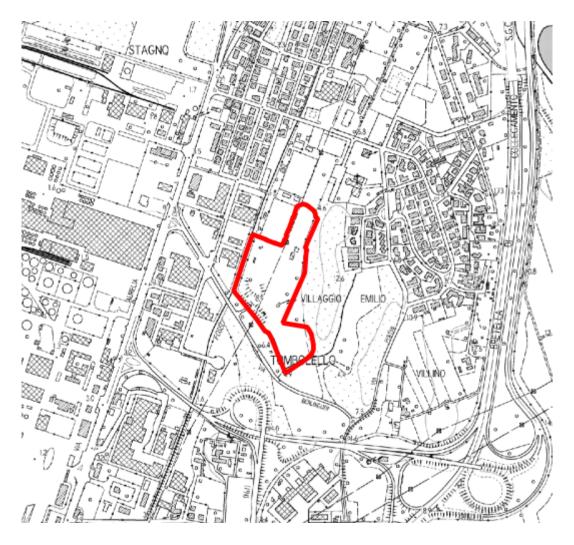


FIGURA 2: UBICAZIONE DEL SITO SU BASE CTR

Il Sito interessa un'area di circa 46.000 mq ed è individuato catastalmente nel foglio 27 particella 2255.

FIGURA 3: STRALCIO MAPPA CATASTALE

2.2 TIPOLOGIA DEL SITO E DESTINAZIONE D'USO

Secondo il Piano strutturale del Comune di Collesalvetti, il Sito ricade nell'Unità Territoriale Organica Elementare n.10 con destinazione d'uso residenziale, in cui si riscontra un fitto sistema di fossi e scoline volti alla regimazione delle acque superficiali. Data la natura originaria di questi terreni e la conformazione morfologica dell'area si riscontrano diverse zone considerate come paludi interne e comunque aree di ristagno. Considerati gli strumenti urbanistici vigenti, i valori limiti di riferimento nel caso in esame sono quelli relativi alla destinazione d'uso residenziale, elencati nella colonna A della Tabella 1 dell'Allegato 5 al Titolo IV del D. Lgs: 152/06.

2.3 ATTIVITÀ SVOLTE SUL SITO

Il sito in esame è ubicato ad Ovest dell'abitato di Stagno ed a Sud dello Scolmatore, in un'area compresa tra la Raffineria ENI e la strada Aurelia, nella periferia settentrionale di Livorno.

Dal punto di vista insediativo va segnalato come quest'area ha subito nel corso degli anni una forte antropizzazione, con consequenziale consumo di suolo, relativa alla formazione di grandi infrastrutture viarie, alle grandi piattaforme produttive/commerciali come l'interporto, nonché il sistema insediativo di Stagno stesso.

Allo stato attuale il Sito risulta interdetto alla cittadinanza.

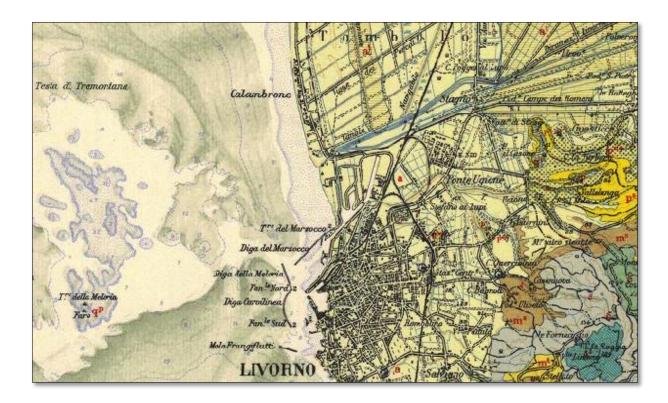
3. INQUADRAMENTO AMBIENTALE E TERRITORIALE DELL'AREA

3.1 INQUADRAMENTO GEOLOGICO

Il territorio della provincia di Livorno è stato suddiviso in tre grandi Raggruppamenti Territoriali derivati in linea di massima dalla morfologia del territorio e dell'aggregazione di formazioni geologiche su basi cronologico stratigrafiche: pianura, collina e arcipelago. I raggruppamenti, in quanto risultato di macroaggregazioni, sono stati a loro volta articolati in sistemi territoriali aventi connotati di maggiore omogeneità fisico-paesaggistica.

I tre sistemi in cui è diviso il territorio comunale (i Monti Livornesi, le Colline neogeniche e quaternarie Livornesi e Pisane e la parte meridionale della Pianura di Pisa) rappresentano i differenti stadi della sua lunga storia evolutiva a partire dal Paleozoico e indicano quanto sia complessa e varia la sua geologia. I Monti Livornesi rappresentano un tratto del Paleo-Appennino che si è corrugato dall'Oligocene superiore – Miocene inferiore (da 30 a 20 milioni di anni fa) per la collisione dei due margini continentali, europeo ed africano, e che ha subito un collasso ed uno smembramento nel Neogene ad opera di una intensa tettonica distensiva.

L'area di interesse, in cui ricade il sito, si colloca nell'ambito del sistema territoriale della pianura settentrionale livornese nel territorio comunale di Collesalvetti, pianura alluvionale con prevalenza di depositi alluvionali e sedimenti palustri alluvionali e/o di colmata risalenti al Pleistocene—Quaternario. Dal punto di vista geologico, il raggruppamento comprende prevalentemente depositi continentali di ambiente fluviale talvolta reincisi e terrazzati.


La stratigrafia del primo sottosuolo (depositi quaternari) è condizionata da fenomeni deposizionali di alluvionali. I sedimenti delle varie unita stratigrafiche si sono via via addossati a quelle precedenti determinando una morfologia a terrazzi che, digradano dalle pendici collinari verso il mare. Per questa complessità di sedimentazione si hanno continue variazioni verticali e rapidi passaggi laterali nel pacco dei terreni più superficiali.

A grande scala, la successione geologica caratterizzante l'area può essere così schematizzata, partendo dal basso verso l'alto:

- Depositi alluvionali, costituiti dai prodotti dell'attività di sedimentazione recente ed attuale dei corsi d'acqua e costituiti da sabbie e ghiaie generalmente poco addensati, la potenza e variabile dà luogo a luogo, ma sempre modesta;
- Depositi palustri alluvionali e di colmata, le cui frazioni spesso non sono riconoscibili direttamente dalla litologia; si tratta di terreni saturi in acqua limoso argillosi e limo sabbiosi.

Di seguito si riporta un'immagine stralciata dalla carta geologica della piana livornese. Si evidenzia l'appartenenza dell'area vasta in cui il sito di interesse si inserisce ai "sedimenti fluviali all'interno degli alvei di piena ordinaria e depositi alluvionali recenti terrazzati e non terrazzati" di età Pleistocene Medio- Olocene.

3.1.1 STRATIGRAFIA LOCALE

Sulla base delle stratigrafie dei sondaggi geognostici realizzati nel sito in esame, è stato possibile ricostruire la colonna litostratigrafica tipo del sito che vede, dall'alto verso il basso, le seguenti tipologie di terreno:

- terreno di riporto/naturale fino a circa 1 metri da p.c.;
- limo sabbioso con ghiaia da circa 1 a circa 3 metri da p.c.;
- limo argilloso grigio con ghiaia da circa 2,5- 4 m.

3.2 INQUADRAMENTO IDROGEOLOGICO

Dal punto di vista idrogeologico, il Comune di Collesalvetti nella distribuzione geografica e nello stato chimico dei complessi idrogeologici, ricade nelle Depressioni Quaternarie, un complesso che

comprende la porzione Pleistocenica dei bacini sedimentari costieri e interni con i livelli ghiaiosi più produttivi formatisi a seguito di episodi erosivi di natura tettonica e più recentemente glacioeustatica. Le acque sono generalmente di buona qualità protette da coperture e lenti limoso argillose, le stesse, che tuttavia, più in profondità determinano confinamento e anossia con insorgenza di ione ammonio e solubilizzazione degli ossidi di ferro e manganese.

3.2.1 ASSETTO IDROGEOLOGICO LOCALE

Il sito insiste su un'area originariamente a matrice paludosa e successivamente bonificata con riporti artificiali.

Dall'analisi dei sondaggi geognostici, dei carotaggi dei pozzi e dalle tomografie geoelettriche (**Allegato 1**), disponibili nella Cartoteca del sito della Regione Toscana e ubicati come illustrato nella figura seguente, si è potuto riscostruire lo spessore dell'acquifero soggiacente al sito come segue.

FIGURA 4: UBICAZIONE DELLE INDAGINI PUNTUALI

Dall'analisi dei documenti consultati si evince che la formazione ospitante l'acquifero è quella dei limi sabbiosi con un tetto a circa 3 m da piano campagna e si assume che la base dell'acquifero sia compreso tra 14,50 e 18,70 m da piano campagna, con al letto la formazione delle argille grigio-azzurre.

Dalle stratigrafie, eseguite tra marzo e aprile 2022, nell'ambito della caratterizzazione del Sito, è stata confermata con maggiore dettaglio la geometria dello strato insaturo oggetto del presente studio:

- 1.50 m: Sabbia limosa con riporto di materiali addensati di varia natura;
- 1.50, 1,90 4 m: Limo sabbioso con materiale torboso.

L'acquifero soggiacente al sito è ospitato nel livello limoso il cui tetto si trova a circa 4,0 metri da p.c., è sostenuta alla base dalle sottostanti argille limose. Dopo l'allestimento dei piezometri il livello statico delle acque sotterranee è stato misurato tra circa 2,70 e 3,50 metri dal p.c. Dall'elaborazione dei dati del rilievo freatimetrico e plani-altimetrico è stato inoltre determinato che le acque sotterranee defluiscono in direzione Nord-Ovest con un gradiente idraulico medio di circa 0,0023 (0,23 %).

Dall'analisi dei dati disponibili nell'area esame l'acquifero risulta avere uno spessore variabile da un minimo di circa 11 m ad un massimo di circa 16 m.

3.3 INQUADRAMENTO CLIMATICO

Si riportano nella seguente tabella, per gli anni compresi tra il 2010 ed il 2018, i valori medi annui di intensità del vento espressi in m/s rilevati nella stazione di Collesalvetti nel Comune di Collesalvetti (LI) (coord. 43°35'04"N – 10°28'03", alt. 15 m s.l.m.) codice TOS11000036.

Anno	Dati/anno	Velocità del vento media annua (m/s)
2010	365	1,50
2011	365	1,54
2012	366	1,55
2013	365	1,51
2014	365	1,38
2015	365	1,36
2016	331	1,54
2017	365	1,63
2018	1753	1,58

TABELLA 1: DATI ANEMOMETRICI DELLA STAZIONE DI COLLESALVETTI

Di seguito si illustra la collocazione della stazione anemometrica di riferimento e un'immagine della stessa, posta a un'altezza di 3 metri da piano campagna.

FIGURA 5: UBICAZIONE DELLA STAZIONE ANEMOMETRICA DI COLLESALVETTI

FIGURA 6: STAZIONE ANEMOMETRICA DI COLLESALVETTI

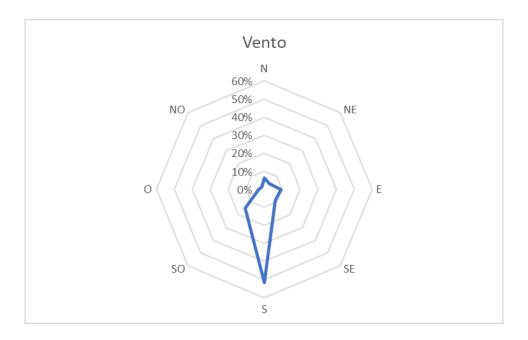


FIGURA 7 - DIREZIONE PREVALENTE DEL VENTO

Si riportano nella seguente tabella, per gli anni compresi tra il 2000 ed il 2022, i valori medi annui delle precipitazioni, espressi in mm, rilevati nella stazione di Stagno nel Comune di Collesalvetti (LI) (coord 43°36,104'N – 10°21,193'E, alt. 1,11 m s.l.m.) codice TOS01005342.

Anno	Precipitazioni (mm)	Dati/anno
2000	393,6	366
2001	704,4	365
2002	865,2	365
2003	689,4	365
2004	911,6	366
2005	757,6	365
2006	808	365
2007	614,8	365
2008	946,4	366
2009	922,8	365
2010	1231,6	365
2011	426,6	365
2012	868,2	366
2013	978,8	365
2014	1279,4	365
2015	728	365
2016	913,2	366
2017	744,4	365

ANALISI DI RISCHIO SANITARIA E AMBIENTALE

Anno	Precipitazioni (mm)	Dati/anno
2018	767,6	365
2019	935	365
2020	957,6	366
2021	763,6	365
2022	292,8	293

TABELLA 2: DATI PLUVIOMETRICI DELLA STAZIONE DI STAGNO

4. CARATTERIZZAZIONE DELLE MATRICI AMBIENTALI

4.1 INDAGINI SCAVO OLEODOTTO (AGOSTO 2021)

In data 10/06/2021 è stato eseguito il campionamento delle pareti dello scavo in contraddittorio con i tecnici del Dipartimento Arpat di Livorno avvenuto in data 10/06/2021 (*vedi Verbale di acquisizione in campo Arpat n. 20210610-00613-1*). Le pareti derivanti dallo scavo sono state suddivise in due altezze rispettando le seguenti profondità di campionamento:

- profondità 0,0-1,0 m primo campione;
- profondità 1,0 m- pelo libero acqua nello scavo secondo campione.

Il pelo libero dell'acqua è posto a circa 3,50 m dal locale piano campagna.

I valori restituiti dalle analisi dei terreni sono stati confrontati con la colonna A (verde pubblico, privato, residenziale) del D.Lgs. 3 aprile 2006, n. 152, Parte IV Titolo V (allegato 5, Tabella 1). Dall'analisi dei risultati del laboratorio di parte e di ARPAT risultano superamenti per i parametri *Cadmio, Nichel, Piombo, Rame, Zinco, Idrocarburi C>12, PCB totali* e *IPA*.

I risultati del campionamento sono riportati in **Allegato 2** mentre in **Tavola 2** si riporta l'ubicazione dei punti di indagine.

4.2 INDAGINI PIANO DI CARATTERIZZAZIONE (MARZO-APRILE 2022)

Dalle indagini svolte nell'ambito del piano di caratterizzazione sono emersi dei superamenti dei limiti per alcuni parametri per quanto riguarda la matrice del Suolo Superficiale, del Suolo Profondo e delle Acque Sotterranee.

I valori restituiti dalle analisi dei terreni sono stati confrontati con la colonna A (verde pubblico, privato, residenziale) del D.Lgs. 3 aprile 2006, n. 152, Parte IV Titolo V (allegato 5, Tabella 1);

Per il Suolo Superficiale è stato riscontrato il superamento di:

- IPA nei campioni del PZ1, S2, S3, S9, S11, S15 e S18;
- Fitofarmaci nei campioni del PZ1, S2, S7 e S11;
- Metalli in PZ2, S7 e S11.

Per il Suolo profondo è stato riscontrato il superamento di:

- Idrocarburi con C>12 in S1, S2, S3, S7, S11;
- IPA in S2, S7, S8, S10, S11, S12 e S15;
- Fitofarmaci in S2, S11 e S12;
- Metalli in S3, S7, S10, S11, S12, S13 e S15, S17 e S18;
- PCB in S11.

I risultati del campionamento sono riportati in **Allegato 2** mentre in **Tavola 2** si riporta l'ubicazione dei punti di indagine.

La caratterizzazione delle acque sotterranee è stata determinata con l'esecuzione di cinque nuovi piezometri, due dei quali ubicati in prossimità del "Fosso del Cateratto" nel rispetto del parere Arpat Dipartimento di Livorno del 26/07/2021. I piezometri sono stati eseguiti a carotaggio continuo nel primo metro quindi a distruzione di nucleo e le attività sono state realizzate nei giorni 22-23-24 marzo 2022. I risultati sono stati confrontati con i valori riportati nel D.Lgs. 3 aprile 2006, n. 152, Parte IV Titolo V (allegato 5, Tabella 2).

Per le Acque Sotterranee è stato riscontrato il superamento di:

- Manganese in tutti e 5 i campioni prelevati (PZ1÷PZ5);
- Ferro in PZ1 e PZ2;
- Boro in PZ4;
- Idrocarburi totali (come n-esano) in PZ2;
- Fluoruri in PZ3.

Le suddette analisi sono state svolte in contraddittorio con gli Enti e nello specifico con Arpat Livorno, il quale ha riscontrato i superamenti per i seguenti parametri:

- Matrice terreni insaturi:
 - o Benzo (a) pirene in S3 (0-1) m;
 - o Idrocarburi con C>12 e PCB totali in S3 (1-4,4) m;
 - Amianto in S8 (1-3,6) m;
 - Benzo (a) antracene, Benzo (a) pirene, Benzo (b) fluorantene, Benzo (g, h, i) perilene,
 Dibenzo (a, e) pirene, Dibenzo (a, h) antracene, Indeno pirene in S9 (0-1) m;
 - o Idrocarburi con C>12 in S9 (1-3,2) m;
 - DDD, DDT e DDE in S16 (0-1) m;
 - o PCB, Benzo (a) pirene, Benzo (g, h, i) perilene in S16 (1-3,3) m;
- Matrice acque sotterranee:
 - Manganese su Pz2, Pz4 e Pz5;
 - Ferro su Pz2 e Pz4;
 - o Boro su Pz4.

In merito al parametro Amianto, rinvenuto da ARPAT nel punto S8 (1-3,6) m, è risultato essere di tipo tremolite e crisotilo e si lascia supporre che sia di origine naturale (*Cfr. nota tecnica ARPAT "Sito LI-1148, ubicato in via Berlinguer a Stagno, Collesalvetti (LI) - Risultati del Piano di Caratterizzazione. Contributo istruttorio."*)

I risultati del campionamento sono riportati in **Allegato 3** mentre in **Tavola 2** si riporta l'ubicazione dei punti di indagine.

4.2.1 DETERMINAZIONE DELLE GRANULOMETRIE

Le osservazioni di campo circa le caratteristiche stratigrafiche dei terreni attraversati sono anche supportate dalle analisi granulometriche eseguite in laboratorio geotecnico unitamente alla determinazione del peso di volume. Nella seguente tabella se ne riepilogano i risultati per il suolo insaturo oggetto di campionamento.

Campione	Comparto	Profondità (m da p.c.)	Classificazione A.G.I.	Densità apparente (g/cm³)
88	Suolo	0,0-1,0	Sabbia ghiaiosa	1,30
\$16	Suolo	1,0-1,3	Sabbia con ghiaia	1,30
\$5	Suolo	1,80-4,40	Sabbia con ghiaia	1,30
\$2	Suolo	1,0-3,0	Sabbia limosa	1,30

TABELLA 3: RISULTATI CARATTERISTICHE FISICHE DEL SOTTOSUOLO DEL SITO

4.2.2 SPECIAZIONE DEGLI IDROCARBURI

È stata effettuata inoltre la <u>speciazione degli idrocarburi</u> su alcuni campioni come sintetizzato nella sottostante tabella; dalla quale risulta che la frazione idrocarburica dominante è quella più pesante ovvero: Idrocarburi Alifatici C19-C36.

Campione	Profondità	Frazioni di Idrocarburi Alifatici				Frazioni di Idrocarburi Aromatici		
Campione	(m da p.c.)	C5-C8	C9-C12	C13-18	C19-C36	C9-C10	C11-C12	C13-C22
Unità d	Unità di misura		(mg/kg s.s.)					
S1	1- 4,1	<0,5	<0,5	14	76	<0,5	<0,05	0,38
S2	1-4,4	<0,5	<0,5	15	100	<0,5	<0,05	1,4
S 3	1-4.4	<0,5	<0,5	23	120	<0,5	<0,05	0,89
S 7	3-4	0,4	2,6	560	1100	<0,5	<0,05	1,22

TABELLA 4: RISULTATI SPECIAZIONE MADEP NEGLI IDROCARBURI DEI TERRENI

4.2.3 DETERMINAZIONE DEI COEFFICIENTI DI RIPARTIZIONE E DEL FOC

Sono state effettuate anche delle determinazioni aggiuntive al fine di calcolare il coefficiente di ripartizione (Kd) per *Cadmio, Cromo totale, Nichel, Piombo, Zinco, Mercurio, Rame, Arsenico*.

Le seguenti tabelle riportano le determinazioni analitiche ed il calcolo del Kd, rispettivamente nel Suolo Superficiale e nel Suolo Profondo.

		SS	SS	SP	SP	SP
	Matrice	Terreni	Terreni	Terreni	Terreni	Terreni
	Data Prelievo	08/04/2022	08/04/2022	08/04/2022	08/04/2022	11/04/2022
	Punto di Campionamento	S1 (0-1 m)	S2 (0-1 m)	S2 (1-4.4 m)	S3 (1-4.4 m)	S7 (1-3.7 m)
Parametro	UM					
Arsenico	l/kg	4500	3952	5000	2794	11000
Berillio	l/kg	1000	1050	2500	2025	1950
Cadmio	l/kg	240	300	500	500	1480
Cobalto	l/kg	1360	1320	3000	4600	3200
Cromo totale	l/kg	1647	2000	5429	7143	5077
Mercurio	l/kg	1400	2900	2900	1800	420000
Nichel	l/kg	3505	4933	11500	20000	14590
Piombo	l/kg	16111	20000	30769	37000	130000
Rame	l/kg	4528	5800	7400	6600	11800
Vanadio	l/kg	3200	4328	7600	6071	8400
Zinco	l/kg	2850	3450	5000	4650	15500

		SS	SP	SS	SP	SS	SS
	Matrice	Terreni	Terreni	Terreni	Terreni	Terreni	Terreni
	Data Prelievo	06/04/2022	06/04/2022	11/04/2022	11/04/2022	05/04/2022	06/04/2022
	Punto di Campionamento	S9 (0-1 m)	S9 (1-3.2 m)	S11 (0-1 m)	S12 (1-3.5 m)	S15 0-1	S16 (0-1 m)
Parametro	UM						
Arsenico	l/kg	2157	11000	4762	300	1321	2263
Berillio	l/kg	1325	1125	1275	564	900	575
Cadmio	l/kg	500	196	480	840	600	260
Cobalto	l/kg	1640	1280	2000	1820	3800	1300
Cromo totale	l/kg	2056	5800	3167	577	2583	4200
Mercurio	l/kg	4500	1000	16000	929	2400	1600
Nichel	l/kg	3737	13000	4900	1444	5217	5769
Piombo	l/kg	6846	19000	76364	1090	6207	11250
Rame	l/kg	3857	3600	9600	911	2692	6000
Vanadio	I/kg	1389	4400	4400	247	906	2029
Zinco	I/kg	3871	1900	6500	1259	3864	1950

TABELLA 5: COEFFICIENTI DI RIPARTIZIONE PER IL SUOLO SUPERFICIALE E IL SUOLO PROFONDO

Si riportano nella seguente tabella i Kd minimi individuati rispettivamente per il comparto suolo superficiale e suolo profondo.

Parametro	Kd minimo Suolo Superficiale		
Arsenico	1321		
Berillio	575		
Cadmio	240		
Cobalto	1300		
Cromo totale	1647		
Mercurio	1400		
Nichel	3505		
Piombo	6207		
Rame	2692		
Vanadio	906		
Zinco	1950		

TABELLA 6 - KD MINIMO SUOLO SUPERFICIALE

Parametro	Kd minimo Suolo Profondo
Arsenico	300
Berillio	564
Cadmio	196
Cobalto	1280
Cromo totale	577
Mercurio	929
Nichel	1444
Piombo	1090
Rame	911
Vanadio	247
Zinco	1259

TABELLA 7 - KD MINIMO SUOLO PROFONDO

Nella tabella seguente sono invece riportati i valori della frazione di carbonio organico (FOC) presente nei suoli.

Parametri/Saggio	S 1	S1	S2	S2	S3	S3	S4	S4	S 5	S5
profondità di prelievo [m]	0-1	1-4,1	0-1	1-4,4	0-1	1-4,4	0-1	1-3,9	0-1	1-4,4
pH	9	9,1	9	9,1	8,9	9	9,2	9,4	8,6	9,4
FOC - frazione di carbonio organico [mg/kg]	9,9	9	12	11	9,1	7,4	14	3,5	8,5	12

Parametri/Saggio	S6	S6	S7	S7	S8	S8	S9	S9	S10	S10
profondità di prelievo [m]	0-1	1-2,7	0-1	1-3,7	0-1	1-3,6	0-1	1-3,2	0-1	1-3,7
pH	9,3	8,6	7,9	8,7	8,6	9,1	9,5	9,1	9,2	8,9
FOC - frazione di carbonio organico [mg/kg]	9,5	6,7	4,6	17	12	14	17	11	14	13

Parametri/Saggio	S11	S11	S12	S12	S13	S13	S14	S14	S15	S15
profondità di prelievo [m]	0-1	1-4	0-1	1-3,5	0-1	14	0-1	1-3,7	0-1	1-4

рН	8,8	9,4	9,1	9,4	9,2	8,9	8,2	9,2	9,1	9,2
FOC - frazione di carbonio organico [mg/kg]	12	14	9,4	6,1	16	21	16	15	14	14

Parametri/Saggio	S16	S16	S17	S17	S18	S18
profondità di prelievo [m]	0-1	1-3,3	0-1	1-3,5	0-1	1-4
рН	8,9	9,5	8,4	7,4	7,9	8,7
FOC - frazione di carbonio organico [mg/kg]	15	14	7,8	8,5	5,4	4,1

TABELLA 8: FRAZIONE DI CARBONIO ORGANICO (FOC) PRESENTE NEI CAMPIONI DI SUOLO SUPERFICIALE E SUOLO PROFONDO

4.2.4 RILIEVO FREATIMETRICO

In data 30/03/2022 è stata eseguita la misura dei livelli piezometrici mediante sonda d'interfaccia acqua/olio, in grado di rilevare la presenza di LNAPL (Light Non Aqueous Phase Liquid). Contestualmente è stato eseguito il rilievo plano-altimetrica dei piezometri realizzati.

Punto di		Quota topografica	Spessore LNAPL	Livello freatimetrico	Quota
rilievo	Data di rilievo	(m s.l.m.)	(cm)	(m da p.c.)	freatimetrica
					(m s.l.m.)
PZ1	30/03/2022	3,832	-	3,26	0,572
PZ2	30/03/2022	4,306	-	3,53	0,776
PZ3	30/03/2022	3,401	-	2,72	0,681
PZ4	30/03/2002	3,532	-	2,99	0,542
PZ5	30/03/2022	3,81	-	3,22	0,59

TABELLA 9: DATI DEL RILIEVO FREATIMETRICO E PLANI-ALTIMETRICO

La falda acquifera soggiacente al sito è ospitata nel livello limoso il cui tetto si trova a circa 4,0 metri da p.c., è sostenuta alla base dalle sottostanti argille limose. Dopo l'allestimento dei piezometri il livello statico delle acque sotterranee è stato misurato tra circa 2,70 e 3,50 metri dal p.c. Dall'elaborazione dei dati del rilievo freatimetrico e plani-altimetrico è stato inoltre determinato che le acque sotterranee defluiscono in direzione Nord-Ovest con un gradiente idraulico medio di circa 0,0023 (0,23 %). Si riporta in **Allegato 4** la ricostruzione della superficie freatimetrica.

4.2.5 RIPORTI

Dall'analisi del materiale di riporto è stato effettuato il test di cessione, dal quale sono emersi dei superamenti per i parametri di seguito illustrati:

- Nichel nel sondaggio S3 tra 1 e 4.4 metri;
- Rame, Nichel, Cromo totale, Piombo, Richiesta chimica di ossigeno nel sondaggio S12 tra 1 e
 3.5m.

Si riportano i dettagli dei valori registrati in **Allegato 5** e ubicazione dei punti con superamento nella figura seguente.

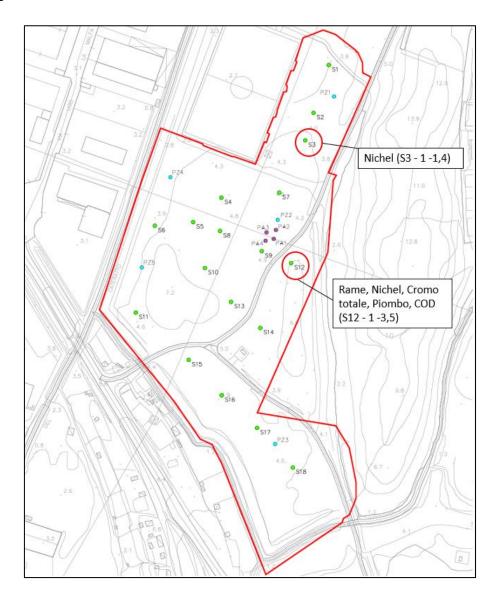


FIGURA 8 - SUPERAMENTI TEST DI CESSIONE (INDICATI CON CERCHIO DI COLORE ROSSO)

4.3 MONITORAGGIO DELLE ACQUE NOVEMBRE 2022

4.3.1 RISULTATI ANALITICI DELLE ACQUE SOTTERRANEE

Dalle indagini svolte in contraddittorio con ARPAT in data 24/11/2022 sono emersi dei superamenti dei limiti per alcuni parametri per quanto riguarda la matrice Acque Sotterranee.

Nello specifico, i superamenti riguardano i seguenti parametri:

- Boro nei piezometri PZ2, PZ3, PZ4 e PZ5;
- Ferro nel piezometro PZ1;
- Manganese nei piezometri PZ1, PZ2, PZ3, PZ4 e PZ5;
- Piombo nel piezometro PZ1.

I risultati del campionamento sono riportati in **Allegato 3** mentre in **Tavola 2** si riporta l'ubicazione dei punti di indagine.

Dalle analisi risulta quanto segue:

- Il superamento degli *Idrocarburi totali* registrato dal solo laboratorio di parte nel PZ2 in occasione della campagna di caratterizzazione NON è stato confermato in quanto è risultato nella maggior parte dei casi inferiore al limite di rilevabilità strumentale;
- Il superamento di Fluoruri registrato dal solo laboratorio di parte nel PZ3 in occasione della campagna di caratterizzazione NON è stato confermato in quanto è conforme ai limiti su tutti i punti oggetto di monitoraggio.

4.3.2 RILIEVO FREATIMETRICO

In data 24/11/2022 è stata eseguita la misura dei livelli piezometrici mediante sonda d'interfaccia acqua/olio, in grado di rilevare la presenza di LNAPL (Light Non Aqueous Phase Liquid).

TABELLA 10: DATI DEL RILIEVO FREATIMETRICO (NOVEMBRE 2022)

Punto di	Data di rilievo	Quota topografica	Spessore LNAPL	Livello freatimetrico	Quota
rilievo	Daia ai fillevo	(m s.l.m.)	(cm)	(m da p.c.)	freatimetrica
					(m s.l.m.)
PZ1	24/11/2022	3,832	-	3,25	0,582
PZ2	24/11/2022	4,306	-	3,4	0,906
PZ3	24/11/2022	3,401	-	2,84	0,561
PZ4	24/11/2022	3,532	-	2,99	0,542

Punto di		Quota topografica	Spessore LNAPL	Livello freatimetrico	Quota
rilievo	Data di rilievo	(m s.l.m.)	(cm)	(m da p.c.)	freatimetrica
					(m s.l.m.)
PZ5	24/11/2022	3,81	-	3,23	0,58

Dall'elaborazione dei dati del rilievo freatimetrico e plani-altimetrico è stato inoltre confermata la direzione di flusso da *Nord-Ovest e un gradiente idraulico medio di circa 0,0023 (0,23 %)*.

La freatimetria derivata è riportata nella Tavola 2b.

5. MODELLO CONCETTUALE DEL SITO (MCS)

Sulla base di quanto definito fino ad ora e in riferimento alle risultanze analitiche ottenute a seguito delle campagne di indagine ambientale svolte sul sito in oggetto, la seguente sezione è dedicata alla formulazione del Modello Concettuale del Sito (MCS).

5.1 FONTI PRIMARIE E SECONDARIE DI CONTAMINAZIONE

Le sorgenti di contaminazione sono differenziate in primarie e secondarie, quelle primarie sono rappresentate dall'elemento o dagli elementi che sono causa di inquinamento, mentre quelle secondarie dagli elementi soggetti alla contaminazione diretta (come acqua, suolo, aria) che a loro volta possono diventare fattori di trasferimento di inquinanti verso altri comparti ambientali o verso bersagli.

Le indagini eseguite non hanno riscontrato presenza di fonti primarie di contaminazione, per quanto riguarda, invece, le fonti di contaminazione secondaria, che sono identificate nelle matrici ambientali caratterizzate dalla presenza di superamenti delle CSC stabilite per la specifica destinazione d'uso del sito, in riferimento agli esiti della caratterizzazione e degli aggiornamenti successivi possono essere individuate nella matrice suolo e acque sotterranee.

5.2 POSSIBILI VIE DI MIGRAZIONE

A seguito della definizione della tipologia delle fonti di contaminazione di un sito, si passa alla valutazione dei possibili percorsi di migrazione della contaminazione stessa ed alle possibili modalità di esposizione dei bersagli alla contaminazione.

Le vie di esposizione sono quelle mediante le quali il potenziale bersaglio entra in contatto con le specie chimiche contaminanti. Le vie di esposizione possono essere dirette, qualora non necessitino di un meccanismo di trasporto e quindi la via di esposizione coincide con la sorgente di contaminazione, o indirette, nel caso in cui il contatto del recettore con la sostanza inquinante avviene a seguito della migrazione dello stesso e quindi avviene ad una distanza dalla sorgente.

Di seguito si riporta uno schema generico di un modello concettuale.

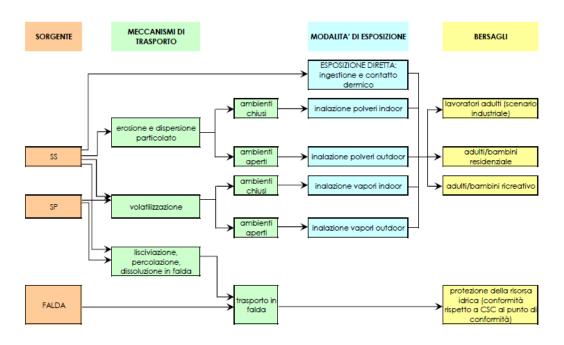


FIGURA 9: SCHEMA TIPO MODELLO CONCETTUALE

A seguire si riporta una sintesi di tutte le possibili vie di migrazione verso i comparti ambientali, indicando quali di queste risultino attive e quali inattive in funzione dei risultati della Caratterizzazione.

Esposizione diretta mediante ingestione e contatto dermico nelle aree prive di impermeabilizzazione superficiale: tale via di esposizione risulta attiva solo a partire dalla sorgente di contaminazione suolo superficiale nelle aree caratterizzate dall'assenza di un manto impermeabile superficiale. In considerazione del fatto che sono stati riscontrati dei superamenti dei limiti normativi nel suolo superficiale e sono presenti aree prove di pavimentazione la via di esposizione diretta mediante ingestione e contatto dermico risulta attiva.

Aerodispersione delle particelle fini nelle aree non asfaltate con conseguente inalazione di polveri outdoor: per tale via di esposizione valgono le medesime considerazioni effettuate relativamente alle vie di esposizione diretta, in quanto la aerodispersione delle particelle può avvenire solo da una sorgente in suolo superficiale in aree non asfaltate e nelle quali la sorgente di contaminazione risulta superficiale. La presente via di migrazione/esposizione risulta attiva per il sito in esame.

Volatilizzazione dei composti maggiormente volatili e dispersione in aria o accumulo in ambienti confinati con conseguente inalazione di vapori indoor e outdoor: la via di migrazione mediante volatilizzazione di vapori con possibile esposizione attraverso inalazione risulta attiva per i soli composti dotati di una certa tensione di vapore. Nel caso in esame tale via risulta attiva per il solo Mercurio in quanto gli altri parametri che hanno mostrato dei superamenti hanno proprietà chimico/fisiche tali da non permettere una loro volatilizzazione. Si fa presente che nel Sito sono

presenti, allo stato attuale, alcune baracche, le quali saranno in futuro oggetto di demolizione e ricollocazione in altra area all'interno del Sito. Secondo un'ottica cautelativa verrà considerato il rischio indoor in tutti i poligoni in cui è stato rinvenuto il Mercurio (unico contaminante volatile).

Dilavamento dei contaminanti da suolo per fenomeni di infiltrazione delle acque meteoriche e per lisciviazione e dissoluzione in falda: tale percorso di migrazione risulta attivo nel caso in cui vi sia una sorgente di contaminazione secondaria nella matrice ambientale suolo insaturo. Tale percorso si considera ad oggi non attivo in quanto durante le due campagne di monitoraggio delle acque sotterranee condotte nel 2021 e 2022 non sono stati rinvenuti, sia dal laboratorio di parte sia di ARPAT, superamenti riconducibili ai composti che hanno mostrato valori non conformi nel suolo superficiale e profondo. Si fa presente che i parametri non conformi che hanno mostrato una diffusione maggiore nei suoli (IPA e Fitofarmaci) in fase di caratterizzazione sono risultati nella maggior parte dei casi al di sotto del limite di rilevabilità strumentale sia nei piezometri ubicati a monte idrogeologico sia nei piezometri ubicati a valle. Si segnala inoltre che in relazione alla contaminazione riscontrata nella matrice acque sotterranee si prevede, come misura di Messa in Sicurezza di Emergenza (MISE), l'installazione di una barriera idraulica sui due piezometri ubicati a valle idrogeologica denominati PZ4 e PZ5 ed un monitoraggio delle acque sotterranee della durata di due anni e frequenza trimestrale. Considerata l'attivazione delle misure di MISE con consequente monitoraggio si prevede di attivare il percorso di lisciviazione dalle sorgenti nel suolo superficiale e suolo profondo al fine di stimare le concentrazioni attese ai POC individuati nel PZ4 e PZ5. Tali valori potranno essere confrontati nell'ambito dei monitoraggi al fine di calibrare il modello implementato con le misure dirette che verranno effettuate.

Trasporto di contaminanti disciolti in falda verso bersagli off site: <u>risulta attivo</u> a causa della contaminazione della matrice ambientale acque sotterranee.

5.3 BERSAGLI DELLA CONTAMINAZIONE

I bersagli della contaminazione sono generalmente suddivisi in ricettori ambientali e ricettori umani. I ricettori ambientali sono identificati nella flora e nella fauna, quali piante, coltivazioni, acque superficiali e profonde, zone protette o habitat particolari; mentre i ricettori umani si distinguono in residenti e frequentatori presenti nell'area di influenza (bersagli in scenario residenziale) e/o nei lavoratori presenti sul sito (bersagli in scenario industriale). I bersagli si possono, inoltre, distinguere in base alla loro localizzazione in bersagli on-site, se presenti in corrispondenza della sorgente di contaminazione, e off-site, se localizzati ad una certa distanza dalla stessa.

L'individuazione dei ricettori della contaminazione deve inoltre essere eseguita attraverso la valutazione di alcuni importanti parametri quali:

- uso attuale del sito e dell'ambiente circostante;
- condizioni ambientali critiche (i.e. aree protette, riserve naturali, falde soggette a vincolo idrogeologico, habitat tipico di specie a rischio);
- presenza e distanza dal sito inquinato dei potenziali bersagli antropici e naturali dell'inquinamento.

In relazione alla destinazione d'uso specifica del sito, si considera il <u>bersaglio umano in scenario</u> <u>"residenziale"</u>, che potrebbero venire a contatto (diretto o attraverso vie di migrazione) con le matrici ambientali per cui sono stati rilevati superamenti dei limiti normativi.

Nel caso in esame, per quanto riguarda i **bersagli ambientali**, questi vengono individuati nelle acque di falda a valle del Sito.

5.4 SINTESI DEL MCS

Si visualizza nella seguente figura il diagramma che sintetizza il Modello Concettuale del Sito così costruito, in termini di sorgenti, vie di migrazione e modalità di esposizione prese in considerazione per l'area in esame.

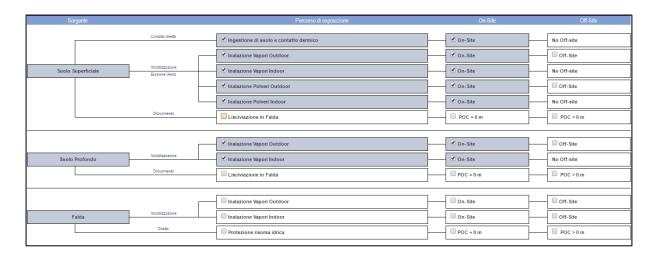


FIGURA 10 - MODELLO CONCETTUALE DEL SITO (SS, SP E GW)

Si fa presente che la matrice acque sotterranee non sarà oggetto di analisi di rischio in base a quanto di seguito riportato:

- Non sussistono rischi sanitari in quanto tutti i superamenti rinvenuti nel corso delle indagini riguardano parametri non volatili;
- Tutti i poligoni oggetto di superamento delle CSC interessano il confine di valle idrogeologica dell'area di indagine quindi, per il bersaglio ambientale, si considerano come CSR le CSC.

Con riferimento al percorso di lisciviazione dal suolo superficiale e suolo profondo si fa presente quanto detto al Par. 5.2 in relazione alle possibili vie di migrazione:

considerata la prossima attivazione delle misure di MISE con conseguente monitoraggio si prevede di attivare il percorso di lisciviazione dalle sorgenti nel suolo superficiale e suolo profondo in modalità diretta al solo fine di stimare le concentrazioni attese ai POC individuati nel PZ4 e PZ5 e non ai fini del calcolo delle CSR. I valori di concentrazione stimati ai POC potranno essere confrontati nell'ambito dei monitoraggi al fine di calibrare il modello implementato con le misure dirette che verranno effettuate.

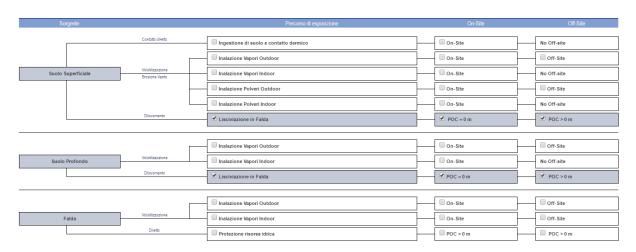


FIGURA 11 - ATTIVAZIONE PERCORSO DI LISCIVIAZIONE IN MODALITÀ DIRETTA

Verranno stimate le concentrazioni ai POC individuati (PZ4 e PZ5) considerando questi ultimi pari a 0 m (on site) e >0 m (off site). Riguardo l'off site verrà presa la distanza dal baricentro della sorgente al piezometro POC più vicino.

6. INDICAZIONI E RIFERIMENTI PER L'ESECUZIONE DI UN'ANALISI DI RISCHIO IGIENICO SANITARIA

La presente sezione è dedicata alla descrizione dell'Analisi di Rischio (AdR) sito specifica svolta in conformità con quanto previsto nell'allegato 1 alla parte IV del titolo V del D.Lgs. 152/2006 e s.m.i. successive modifiche e integrazioni.

A monte dello svolgimento dell'analisi di rischio occorre definire il Modello Concettuale del Sito (MCS), ricostruibile in base alle informazioni raccolte durante le indagini ambientali svolte sul sito in esame nella fase di caratterizzazione. A tale proposito, si rimanda al Modello Concettuale del Sito formulato nel precedente capitolo, a partire dal quale sono state formulate le considerazioni necessarie all'inserimento dei dati di input per lo svolgimento dell'analisi di rischio.

Il processo di valutazione delle CSR per i parametri che hanno mostrato superamenti rispetto alle CSC è partito, quindi, dalla formulazione di un Modello Concettuale del Sito inteso come schematizzazione della situazione reale, caratterizzata da eterogeneità e complessità, che consenta di rappresentare la realtà in modo adequato e sufficientemente conservativo.

L'Analisi di Rischio, secondo quanto espressamente richiesto negli allegati tecnici del D.Lgs. 152/06 e successive modifiche e integrazioni, è stata svolta in linea con il principio di cautela (o conservatività), che ha caratterizzato ogni fase del processo e che ha guidato la scelta dei dati di input. La presente analisi è stata condotta mirando a massimizzare l'esposizione ed il rischio per il bersaglio in maniera tale da caratterizzare il "caso peggiore" e garantire che i risultati ottenuti fossero effettivamente protettivi per la salute dei bersagli umani.

I dati e le informazioni utilizzati per lo svolgimento della presente analisi di rischio sono in linea con quanto descritto nello standard ASTM E2081 (2004), in conformità con quanto riportato in allegato 1 alla parte IV del titolo V del D.Lgs. 152/2006. In tal senso, quindi, sono stati utilizzate fonti bibliografiche di riconosciuta valenza internazionale nel campo dell'analisi di rischio quali documenti U.S. EPA, UNEP, WHO, oltre alla documentazione elaborata dagli enti scientifici APAT e ISS.

Per ciò che riguarda la valutazione della tossicità/cancerogenicità delle sostanze indice si è fatto riferimento ai valori più aggiornati (marzo 2018) contenuti nel database redatto dall'Istituto Superiore di Sanità ISS e dall'Istituto Nazionale per la Assicurazione contro gli Infortuni sul Lavoro INAIL.

L'analisi di rischio è stata condotta in modalità inversa, per la definizione della massima concentrazione di contaminanti compatibile con un rischio accettabile per il recettore.

In via cautelativa, in generale si assume l'additività del rischio delle singole sostanze cancerogene e l'additività dell'indice di rischio non cancerogeno delle singole sostanze non cancerogene,

indipendentemente dagli organi-bersaglio. Non sono considerati eventuali effetti sinergici o interazioni antagonistiche delle sostanze indice.

Le elaborazioni di Analisi di Rischio sono finalizzate alla valutazione di esposizioni croniche di recettori umani e del recettore acque di falda e non includono valutazioni ecologiche od organolettiche relative alle matrici ambientali considerate.

6.1 PRESENTAZIONE DEL PROGRAMMA UTILIZZATO PER LO SVILUPPO DELL'ANALISI DI RISCHIO

È stato utilizzato, per le elaborazioni numeriche legate alle concentrazioni riscontrate nelle matrici terreni e acque di falda della presente Analisi di Rischio, il software **Risk-net versione 3.1.1**¹ sviluppato nell'ambito della rete RECONnet (Rete Nazionale sulla gestione e la Bonifica dei Siti Contaminati) su iniziativa del Dipartimento di Ingegneria Civile dell'Università di Roma "Tor Vergata".

Il software consente di applicare la procedura di Analisi di Rischio sanitaria ai siti contaminati, in accordo con quanto previsto dalle linee guida ISPRA (2008) e dalla normativa italiana (D.Lgs. 152/06 e D.Lgs. 04/08).

Il software permette di calcolare sia il rischio in modalità diretta ("forward"), associato alla concentrazione rilevata in sorgente, sia gli obiettivi di bonifica (CSR, concentrazioni soglia di rischio) in modalità inversa ("backward"), secondo i criteri definiti da ISPRA.

Si precisa, inoltre, che il software Risk-net 3.1.1 permette di calcolare il rischio e la CSR per valori di concentrazione superiori alla Csat secondo la metodologia richiesta dagli Enti cioè senza operare il "taglio alla saturazione".

Riguardo le proprietà chimico-fisiche e tossicologiche degli inquinanti indicatori il software descritto utilizza i valori contenuti nella Banca dati ISS-ISPESL aggiornata a marzo 2018, scaricabile dal sito:

http://www.iss.it/iasa.

¹ Il software Risk-net versione 3.1.1 è scaricabile gratuitamente da sito http://www.reconnet.net/Risknet_download.html

6.2 CRITERIO GENERALE PER IL CALCOLO DELLE CSR

L'applicazione della procedura di Analisi di Rischio secondo la modalità inversa permette, per ogni specie chimica contaminante, il calcolo degli obiettivi di bonifica sito-specifici per ciascuna matrice sorgente di contaminazione; ossia del valore di concentrazione massimo ammissibile, in corrispondenza di ogni sorgente secondaria di contaminazione (Concentrazione Soglia di Rischio, CSR), compatibile con il livello di rischio tollerabile per il recettore esposto.

I valori di accettabilità del rischio considerati sono in accordo con il D.Lgs. n. 04/08, in particolare con le modifiche ivi contenute all'Allegato 1 al Titolo V del D.Lgs. 152/06. Nel presente lavoro sono stati pertanto adottati i seguenti valori di rischio accettabile:

- Rischio cancerogeno per esposizione ad un singolo agente cancerogeno: R=10-6;
- Rischio cancerogeno cumulativo: Rcum=10⁻⁵;
- Indice di Rischio relativo all'esposizione ad un singolo agente tossico (Hazard Quotient, HQ):
 <1:
- Indice di Rischio cumulativo (Hazard Index, HI): <1.

In primo luogo, sono calcolate le CSR per la singola sostanza. Successivamente, in accordo con i criteri ISPRA, per il calcolo delle CSR per più vie di esposizione, le CSR finali sono definite a partire dai valori più conservativi tra le CSR calcolate per i diversi percorsi attivi.

Una volta individuate le CSR relative al percorso più critico, sono determinate le CSR finali, generalmente in modo iterativo, al fine di garantire l'accettabilità del rischio sia per le singole sostanze sia per la presenza contemporanea di più sostanze (rischio cumulato).

Si noti che, sebbene il calcolo delle CSR per le singole sostanze sia univoco per un determinato modello concettuale, il calcolo delle CSR finali (rischio cumulato) ammette più soluzioni accettabili; la soluzione proposta è stata modulata in funzione del contributo al rischio delle singole sostanze per il modello concettuale considerato.

Le CSR per la singola sostanza, se necessario sono quindi ridotte applicando un fattore di riduzione (identificati dalla sigla "f" nei fogli di calcolo) al fine di determinare delle CSR "sanitarie" cumulate tali da calcolare un valore di rischio cumulato accettabile per tutti i recettori.

Laddove una o più CSR risultino inferiori alla CSC di riferimento, si assumerà la CSR essere pari alla CSC e sarà esclusa dalla verifica del rischio cumulato.

Il calcolo della CSR inoltre è svolto disattivando nel software l'opzione: "Considera Csat per il calcolo del rischio e della CSR". Si effettua quindi anche la verifica del rischio in modalità diretta, qualora sui singoli composti si determinino CSR teoriche superiori alla concentrazione di saturazione (Csat) per i suoli e alla concentrazione di solubilità per le acque sotterranee (Csol).

Si prevede in questi casi di considerare come CSR sito-specifica la concentrazione massima rappresentativa alla sorgente che non costituisce rischio; oppure laddove la CSR teorica risulti maggiore della saturazione/solubilità e alla rispettiva concentrazione massima (Cmax) sia associato un rischio non accettabile, la stessa Cmax sarà corretta fino ad avere un valore che implichi rischi singoli e cumulativi accettabili.

Preme però sottolineare che, qualora in futuro siano riscontrate concentrazioni di tali parametri sul comparto interessato eccedenti la CSR adottate, dovrà essere prevista l'esecuzione di una nuova analisi di rischio igienico-sanitaria che revisioni/aggiorni il modello concettuale, le sorgenti di contaminazione e verifichi nuovamente il rischio associato alle nuove concentrazioni riscontrate.

Relativamente ai parametri idrocarburi C>12, il software calcola il valore della CSR tenendo conto delle frazioni idrocarburiche di cui è costituito il contaminante e delle rispettive CSR, con la metodologia prevista dalle Linee Guida APAT.

Sulla base di quanto sopra si adotta perciò come CSR:

- il valore restituito dal software;
- il valore restituito dal software corretto nei casi dove questo generava rischi cumulativi non accettabili.
- il valore di Cmax laddove la CSR teorica risulti maggiore della saturazione/solubilità;
- laddove la CSR teorica risulti maggiore della saturazione/solubilità e nel caso in cui alla Cmax sia associato un rischio non accettabile, la Cmax sarà corretta fino ad avere un valore che implichi rischi singoli e cumulativi accettabili;
- > il valore della CSC nel caso in cui la rispettiva CSR risulti inferiore alla CSC stessa.

Sono esclusi infine quei parametri per il quale il software indicava come non applicabile (NA) la CSR (ad es. via di esposizione non attiva o composto immobile che non volatilizza).

7. PARAMETRAZIONE DEL MODELLO CONCETTUALE DEL SITO PER L'ANALISI DI RISCHIO

Il modello concettuale del sito è elaborato tenendo in considerazione lo scenario più cautelativo possibile. Su tale premessa, è stato definito il Modello Concettuale del Sito (MCS) per l'elaborazione dell'analisi di rischio sito-specifica in termini di:

- individuazione e caratteristiche della sorgente di contaminazione;
- valutazione e scelta dei contaminanti;
- definizione delle vie di diffusione della contaminazione nelle varie matrici ambientali;
- identificazione dei bersagli della contaminazione;
- identificazione degli scenari di esposizione alla contaminazione del bersaglio umano;
- ricostruzione degli scenari di rischio.

Come precedentemente detto, le sorgenti di contaminazione secondarie sono state identificate nelle matrici ambientali:

- suolo superficiale insaturo (SS);
- suolo profondo insaturo (SP);

Si fa presente che la matrice acque sotterranee non verranno implementati dei modelli di rischio secondo quanto riportato al Par. 5.4.

Di seguito, si riportano tipologia e caratteristiche geometriche delle sorgenti di contaminazione schematizzate per lo svolgimento della presente analisi di rischio, nonché le caratteristiche chimico-fisiche e tossicologiche dei contaminanti di interesse, ovvero quelli che sono stati selezionati in relazione ai superamenti registrati nei campioni prelevati sul sito.

Tra le ipotesi iniziali di semplificazione di un sistema complesso quale quello in esame ai fini dello svolgimento dell'analisi di rischio sono le seguenti:

- Sorgente di contaminazione omogenea ed isotropa;
- Sorgente di contaminazione caratterizzata da geometria regolare rispetto alle direzioni prevalenti della falda sotterranea e del vento;
- Valori di input costanti nel tempo.

Ciò premesso, di seguito si riportano le assunzioni e semplificazioni effettuate per il caso in esame necessarie alla definizione delle caratteristiche delle sorgenti di contaminazione individuate sull'area. La procedura per la delimitazione di una o più sorgenti all'interno di un sito è stata ricavata dall'Appendice D del documento *Risk Assessment Guidance for Superfunds* (US EPA, 2001) e riportata anche nelle *linee guida APAT*.

I criteri indicati nelle linee guida APAT ripresi dall'Appendice D del documento *Risk Assessment Guidance for Superfunds* (US EPA, 2001), per la schematizzazione areale della sorgente di contaminazione, indicano quanto segue:

- 1. Suddivisione in poligoni di influenza dell'area oggetto d'indagine, secondo la strategia di campionamento adottata:
 - a. Campionamento ragionato (secondo i poligoni di Thiessen);
 - b. Campionamento sistematico (celle a maglia regolare);
- Determinazione della continuità spaziale delle sorgenti;
- 3. Analisi del vicinato dei poligoni/celle con C < CSC.

Nel caso specifico si opterà per una suddivisione del sito in poligoni di Thiessen in quanto le indagini sono state a suo tempo distribuite con un criterio ragionato.

Si riporta in **Tavola 3** la ricostruzione dei Poligoni di Thiessen per il comparto suolo superficiale e suolo profondo ed in **Tavola 4** la ricostruzione dei poligoni di Thiessen per il comparto acque sotterranee.

7.1 GEOMETRIA DELLE POTENZIALI SORGENTI DI CONTAMINAZIONE: SUOLO INSATURO SUPERFICIALE (SS)

Il data set inerente al suolo insaturo superficiale (SS) è costituito da tutti i campioni prelevati in Sito (Cfr. Par. 4.1 e 4.2) comprensivi dei dati registrati da ARPAT in contraddittorio.

Si riporta in **Tavola 5** la rappresentazione grafica e tabellare di tutti i superamenti registrati nel suolo superficiale.

7.1.1 DELIMITAZIONE AREALE DELLE POTENZIALI SORGENTI DI CONTAMINAZIONE DEL SS

Si individuano così tre distinte sorgenti, ciascuna con la rispettiva analisi del vicinato, le quali rappresentano le sorgenti di potenziale contaminazione nel suolo superficiale (**Tavola 8**):

- Sorgente SS_1: comprende i superamenti di Cadmio, Nichel, Piombo, Zinco, DDx, Idrocarburi C>12, PCB totali e IPA registrati nei poligoni PA1, PA2, PA3, PA4, Pz1, Pz2, S2, S3, S7 e S9;
- Sorgente SS_2: comprende i superamenti di Mercurio, DDx e IPA registrati nei poligoni S11, S15 e S16;
- Sorgente **SS_3**: comprende i superamenti di IPA registrati nel poligono S18.

7.1.2 DELIMITAZIONE VERTICALE DELLE POTENZIALI SORGENTI DI CONTAMINAZIONE DEL SS

Il SS corrisponde per convenzione all'orizzonte compreso tra il piano campagna (p.c.) e la profondità di un metro da p.c.; si riportano nella seguente Tabella gli spessori delle sorgenti sopra descritte.

Sorgente	Base	Tetto	Spessore
SS_1	0	1	1
SS_2	0	1	1
SS_3	0	1	1

TABELLA 11 - SPESSORE SORGENTI NEL SUOLO SUPERFICIALE

7.1.3 SCHEMATIZZAZIONE DELLA POTENZIALE SORGENTE NELLA DIREZIONE DEL VENTO E DI FALDA

Individuati spessori ed estensione delle sorgenti, occorre adesso schematizzarle in pianta l'estensione massima delle sorgenti nella direzione prevalente dei venti e nella direzione prevalente di falda. Si visualizza quanto sopra nelle figure e nelle tavole di cui al precedente paragrafo; nella seguente tabella sono poi sintetizzate le dimensioni inserite.

Sorgente	Direzione parallela a quella del vento (m)	Direzione parallela a quella di falda (m)	Direzione ortogonale a quella di falda (m)
SS_1	225.1	81.9	218.9
SS_2	127.4	161.4	104.1
SS_3	121.4	95.1	131.7

TABELLA 12 – DIMENSIONI DELLE SORGENTI NELLA DIREZIONE DEL VENTO E DELLA FALDA

7.2 GEOMETRIA DELLE POTENZIALI SORGENTI DI CONTAMINAZIONE: SUOLO PROFONDO (SP)

Il data set inerente al suolo insaturo profondo (SP) è costituito da tutti i campioni prelevati in Sito (Cfr. Par. 4.1 e 4.2) comprensivi dei dati registrati da ARPAT in contraddittorio.

Si riporta in **Tavola 6** la rappresentazione grafica e tabellare di tutti i superamenti registrati nel suolo profondo.

7.2.1 DELIMITAZIONE AREALE DELLE POTENZIALI SORGENTI DI CONTAMINAZIONE NEL SP

Si individua nel suolo profondo una sola sorgente, con la rispettiva analisi del vicinato, la quale rappresenta la sorgente di potenziale contaminazione nel suolo profondo (**Tavola 9**):

Sorgente SP_1: comprende i superamenti di Arsenico, Cadmio, Cobalto, Mercurio, Nichel, Piombo, Rame, Zinco, Idrocarburi C>12, PCB totali, DDX, e IPA registrati nei poligoni PA1, PA2, PA3, PA4, Pz1, Pz2, S1, S2, S3, S7, S8, S9; S10, S11, S12, S13, S15, S16 e S18.

7.2.2 DELIMITAZIONE VERTICALE DELLE POTENZIALI SORGENTI DI CONTAMINAZIONE NEL SP

Nel caso in esame il SP corrisponde all'orizzonte compreso tra 1 metro da piano campagna e la soggiacenza espressa in metri da piano campagna in quanto è stato prelevato, su tutti i punti di indagine, un campione compreso tra 1 metro e la falda. Considerato che il livello della falda è risultato variabile si è assunto cautelativamente uno spessore della sorgente pari a 3,4 m (considerando il top pari ad 1 metro da piano campagna ed il bottom maggiore registrato e pari a 4,4 metri da piano campagna)

7.2.3 SCHEMATIZZAZIONE DELLA POTENZIALE SORGENTE NELLA DIREZIONE DEL VENTO E DI FALDA

Individuati spessori ed estensione delle sorgenti, occorre adesso schematizzarle in pianta l'estensione massima delle sorgenti nella direzione prevalente dei venti e nella direzione prevalente di falda. Si visualizza quanto sopra nelle figure e nelle tavole di cui al precedente paragrafo; nella seguente tabella sono poi sintetizzate le dimensioni inserite.

Sorgente	Direzione parallela a quella del vento (m)	Direzione parallela a quella di falda (m)	Direzione ortogonale a quella di falda (m)
SP_1	439.9	244.5	432.3

TABELLA 13. DIMENSIONI DELLE SORGENTI NELLA DIREZIONE DEL VENTO E DELLA FALDA

7.3 GEOMETRIA DELLE POTENZIALI SORGENTI DI CONTAMINAZIONE: ACQUE SOTTERRANEE (GW)

Il data set inerente alle acque sotterranee (GW) è costituito dai campioni prelevati in occasione della campagna di caratterizzazione realizzata nel marzo-aprile 2022 e nella successiva campagna di monitoraggio acque sotterranee eseguita a novembre 2022 le quali sono state svolte in contraddittorio con ARPAT. Si riporta in **Tavola 7** rappresentazione grafica e tabellare dei superamenti registrati.

Secondo quanto riportato al Par. 5.4 la matrice acque sotterranee non sarà oggetto di analisi di rischio in quanto i valori registrati sia dal laboratorio di parte sia da ARPAT non risultano volatili quindi il percorso di volatilizzazione non risulta attivo con conseguente assenza di rischi sanitari. Per quanto riguarda il bersaglio ambientale tutti i poligoni risultano ubicati in corrispondenza del confine di valle idrogeologica quindi, considerando POC=0, per il solo bersaglio ambientale si assumono CSR=CSC.

7.4 CONTAMINANTI DI INTERESSE

I contaminanti da utilizzare per lo svolgimento dell'analisi di rischio sito specifica dell'area sono stati selezionati per ogni sorgente secondaria in relazione ai superamenti delle rispettive CSC registrati nei campioni prelevati sul sito, nelle matrici ambientali impattate.

Per il parametro Mercurio la Banca Dati ISS-INAIL (marzo 2018) indica di utilizzare nell'applicazione della procedura di AdR solo i seguenti composti del mercurio, in funzione dei percorsi considerati:

- Volatilizzazione: Mercurio Elementare in quanto è la forma più volatile;
- Ingestione e contatto dermico: Metilmercurio in quanto è la forma più tossica per ingestione;
- Cloruro di mercurio (e altri Sali del mercurio) per la lisciviazione e il trasporto in falda, in quanto rappresenta la forma più solubile;

7.4.1 TRATTAMENTO STATISTICO DEL DATO

Le Linee Guida APAT secondo quanto previsto al Capitolo 3, Paragrafo 3.1.5 (marzo 2008), prevedono per le matrici ambientali, nel caso in cui il set di dati per un determinato parametro sia costituito da un numero maggiore di 10 che il valore rappresentativo sia quello risultante dal calcolo del UCL 95%.

Nel caso specifico cautelativamente nel SS, SP ed in falda per tutte e sorgenti le Concentrazioni rappresentative in sorgente (Crs) saranno coincidenti con le Cmax.

7.4.1 CONCENTRAZIONE RAPPRESENTATIVA IN SORGENTE

Si riportano nelle seguenti tabelle per sorgente di potenziale contaminazione i parametri con la rispettiva Crs che saranno oggetto della analisi di rischio.

Nel complesso, lo stato di potenziale contaminazione risulta il seguente:

- Suolo superficiale: Cadmio, Nichel, Piombo, Zinco, Mercurio, DDx, IPA, Idrocarburi C>12 e PCB totali;
- Suolo profondo: Arsenico, Cadmio, Cobalto, Mercurio, Nichel, Piombo, Rame, Zinco, Idrocarburi C>12, DDx, IPA e PCB totali.

Si riportano di seguito le Crs di ogni sorgente che corrispondono alle Cmax:

• Sorgente SS_1:

- Cadmio: 3,8 mg/kg;
- Nichel: 151 mg/kg;
- o Piombo: 540 mg/kg;
- Zinco: 1600 mg/kg;
- DDD, DDT, DDE: 0,14 mg/kg;
- Benzo (a) antracene: 1,1 mg/kg;
- o Benzo (a) pirene: 1,4 mg/kg;
- Benzo (b) fluorantene: 1,1 mg/kg;
- o Benzo (k) fluorantene: 0,69 mg/kg;
- Benzo (g,h,i) perilene: 1,1 mg/kg;
- Dibenzo (a,e) pirene: 0,3 mg/kg;
- Dibenzo (a,l) pirene: 0,12 mg/kg;
- Dibenzo (a,i) pirene: 0,29 mg/kg;
- Dibenzo (a,h) antracene: 0,19 mg/kg;
- o Indenopirene: 0,78: mg/kg;
- Idrocarburi C>12: 76 mg/kg;
 - Alifatici C13-C18: 10;
 - Alifatici C13-C18: 65;
 - Aromatici C13-C22: 1;
- PCB totali 0,095: mg/kg;

Sorgente SS_2:

- Mercurio elementare: 1,6 mg/kg;
- Metilmercurio: 1,6 mg/kg;
- DDD, DDT DDE: 0,022 mg/kg;
- Benzo (a) pirene: 0,36 mg/kg;
- Benzo (g,h,i) perilene: 0,26 mg/kg;
- o Indenopirene: 0,23 mg/kg;

• Sorgente SS_3:

- Benzo (a) pirene: 0,21 mg/kg;
- Benzo (g,h,i) perilene: 0,15 mg/kg;
- o Indenopirene: 0,13 mg/kg:

Sorgente SP_1:

- Arsenico: 29 mg/kg;
- o Cadmio: 6,2 mg/kg;
- o Cobalto: 23 mg/kg;
- Mercurio: 42 mg/kg;

Nichel: 240 mg/kg;

Piombo: 564 mg/kg;

o Rame: 510 mg/kg;

Zinco: 2010 mg/kg;

Idrocarburi C>12: 2160 mg/kg;

o PCB totali: 0,2 mg/kg;

o DDD, DDE, DDT: 0,093 mg/kg;

Benzo (a) antracene: 0,58 mg/kg;

Benzo (a) pirene: 0,46 mg/kg;

Benzo (b) fluorantene: 0,59 mg/kg;

Benzo (g,h,i) perilene: 0,37 mg/kg;

Dibenzo (a,e) pirene: 0,18 mg/kg;

Dibenzo (a,i) pirene: 0,28 mg/kg;

Dibenzo (a,h) antracene: 0,122 mg/kg;

Indenopirene: 0,3 mg/kg.

7.4.1 CARATTERISTICHE CHIMICO-FISICHE DEI CONTAMINATI

In linea con il Documento di supporto alla Banca Dati ISS-INAIL del 2018 il percorso di esposizione "inalazione di vapori outdoor e indoor" è stato attivato solo per il Mercurio, nello specifico nella forma del Metilmercurio, in quanto <u>unico contaminate considerato volatile</u>.

7.5 PARAMETRI SITO-SPECIFICI

Di seguito si riportano i parametri sito-specifici che sono stati dedotti sulla base delle varie indagini di caratterizzazione svolte sul sito ed in parte stimati utilizzando dati bibliografici di default universalmente condivisi nei casi in cui non sia stato possibile effettuare una determinazione analitica.

In particolare, è stato utilizzato il seguente criterio nella selezione dei parametri caratteristici del sito:

- per quanto possibile i parametri sito specifici devono essere determinati mediante misure dirette, individuato quale miglior criterio da adottare;
- nel caso in cui non sia possibile effettuare misure dirette verranno in primis utilizzati dati storici derivanti da bibliografia relativi a studi precedentemente effettuati sull'area in esame;
- secondariamente, in assenza di misure dirette e dati storici sul sito si passa a criteri di stima indiretta descritti per ciascun parametro nel manuale UNICHIM ed in altri documenti di riferimento:

• infine, qualora non sia applicabile alcuno dei criteri già menzionati potranno essere utilizzati i valori di default proposti per una analisi di Livello di 1.

Occorre comunque chiarire che i dati inseriti nel database dell'Analisi di Rischio sono sempre e comunque cautelativi e quindi, nella maggior parte dei casi, peggiorativi in termini di rischio. Ciò ha permesso, quindi, di stimare il rischio nelle condizioni peggiori che possano sussistere sul sito.

7.5.1 TESSITURA RAPPRESENTATIVA

Il parametro granulometria non entra direttamente nelle equazioni utili per il calcolo dei fattori di trasporto, ma può essere utile per la stima di molte delle proprietà fisiche del terreno difficilmente misurabili direttamente. I parametri porosità totale, contenuto volumetrico d'acqua, contenuto volumetrico d'aria e porosità effettiva sono stati ricavati tenendo in considerazione la granulometria ricavata dalle indagini svolte (Cfr. paragrafo 4.2.1).

Dalle indagini dirette effettuate si è scelta quale tessitura rappresentativa dell'orizzonte insaturo (SS e SP): SAND.

Relativamente la parte satura si è fatto riferimento alla stratigrafia del punto SO34_1 riportata in **Allegato 1** e si è scelta quale tessitura rappresentativa dell'orizzonte saturo: LOAMY SAND.

7.5.2 PARAMETRI DELLA ZONA INSATURA

Nella tabella seguente si riportano i principali parametri di caratterizzazione del terreno insaturo, inseriti nel programma RISK-NET ed utilizzati dal programma stesso per elaborare l'AdR. Non sono stati riportati, invece, i parametri che non sono richiesti dal software in quanto non utilizzati nelle formule di trasporto per i percorsi attivi.

Parametro	Simbolo	Default	Sito- Specifico	UM	Note				
Tessitura della Zona Insatura									
Porosità efficace del terreno in zona insatura	θе	Letteratura	0.385	-	1				
Contenuto volumetrico di acqua nel suolo	θw	Letteratura	0.068	-	1				
Contenuto volumetrico di aria nel suolo	θа	Letteratura	0.317	-	1				
Contenuto volumetrico di acqua nella frangia capillare	θw,cap	Letteratura	0.33	-	1				
Contenuto volumetrico di aria nella frangia capillare	θа,сар	Letteratura	0.055	-	1				
Spessore della frangia capillare	hcap	Letteratura	0.1	m	1				

Parametro	Simbolo	Default	Sito- Specifico	UM	Note
Tes	ssitura della Z	ona Insatura			
Carico idraulico critico (potenziale di matrice)	hcr	Letteratura	-0.0402	m	1
Conducibilità idraulica del terreno nella zona insatura	Ksat,s	Letteratura	8.25e-5	m/s	(1)
Battente idrico in superficie	Hw	0.25	0.25	m	1()
Carat	teristiche dell	a Zona Insatu	ıra		
Densità del suolo	ρs	1.7	1.7	g/cm³	default
pH del suolo	рН	6.8	6.8	-	default
Frazione di carbonio organico - suolo superficiale	foc,SS	0.01	0.00996	g/g	(2)
Frazione di carbonio organico - suolo profondo	foc,SP	0.01	0.00929	g/g	(2)
Frazione residua dei pori nel suolo (per calcolo Cres)	Sr	0.04	0.04	m	default
Spessore della zona insatura	hv	Calcolato	2.620	m	(3)
In	filtrazione ne	sottosuolo			
Piovosità media annua	Р	129	127.94	cm/y	(4)
Frazione areale di fratture outdoor	ηout	1	1	-	default
Infiltrazione efficace nel suolo	lef	Calcolato	29.46	cm/y	cm/y
	Altri parametr	i intermedi			
Spessore della zona di miscelazione in falda	δgw	Calcolato	11.00	m	(5)
Fattore di diluizione in falda	LDF	Calcolato	1.45	-	default

TABELLA 14 - CARATTERISTICHE ZONA INSATURA

- 1. I valori riportati sono quelli di default presenti nel Manuale ISPRA in corrispondenza della litologia SAND scelta visto l'esito delle indagini.
- 2. Il foc è stato determinato su tutti i campioni prelevati nel suolo superficiale e suolo profondo; Come valore rappresentativo del foc, disponendo di più di 10 dati, è stato calcolato l'LCL (Lower Confidence Limit) al 95%, pari a 0,00996 g/g per il suolo superficiale e 0,00929 per il suolo profondo (in **Allegato 6** si riportano le schermate di output del software EPA ProUCL, con il quale è stato effettuato il calcolo – i dati di foc registrati sono riportati al Par. 4.2.3).
- 3. Lo spessore dell'orizzonte insaturo è calcolato assumendo la soggiacenza pari a 2,72 m da p.c., la quale risulta la minore registrata in fase di caratterizzazione:

- Come valore rappresentativo delle precipitazioni è stato considerato, secondo un'ottica cautelativa, il valore di 127,94 cm/anno in quanto minore assoluto della serie storica considerata (Cfr. Par. 3.3);
- 5. Lo spessore di miscelazione in falda è stato assunto pari a 11 m considerando il valore minimo individuato (Cfr. Par. 3.2.1).

7.5.3 PARAMETRI DELLA ZONA SATURA

Parametro	Simbolo	Default	Sito- Specifico	UM	Note						
Tessitura della Zona Satura											
Conducibilità idraulica del terreno saturo	Ksat	Letteratura	4.05e-5	m/s	1						
Porosità efficace del terreno in zona satura	θe,sat	Letteratura	0.353	-	1						
Caratteristic	he della Zo	na Satura									
Spessore acquifero	da	2	11	m	2						
Gradiente idraulico	i	0.01	0.0023	m/m	3						
Velocità di Darcy	vgw	Calcolato	9.31e-8	m/s	3						
Velocità media effettiva nella falda	ve	Calcolato	2.64e-7	-	3						
Frazione di carbonio organico - suolo saturo	foc,sat	0.001	0.001	g/g	default						
Frazione residua dei pori nel suolo saturo (per calcolo Cres)	Sr	0.04	0.04	m	default						
Trasporto e	dispersion	e in falda									
Distanza punto di conformità in falda	POC	100	-	m	4						
Dispersività longitudinale in falda	ax	Calcolato	10.00	m							
Dispersività trasversale in falda	ay	Calcolato	3.33	m							
Dispersività verticale in falda	az	Calcolato	0.50	m							

TABELLA 15 - CARATTERISTICHE ZONA SATURA

 I valori riportati sono quelli di default presenti nel Manuale ISPRA in corrispondenza della litologia LOAMY SAND scelta sulla base delle indagini disponibili.

- 2. Lo spessore di miscelazione in falda è stato assunto pari a 11 m considerando il valore minimo individuato (Cfr. Par. 3.2.1).
- 3. Il valore del gradiente idraulico considerato è quello desunto in fase di caratterizzazione;
- 4. Al solo fine di stima delle concentrazioni attese ai POC individuati nei piezometri PZ4 e PZ5, a seguito del potenziale rilascio di contaminanti in falda da SS e SP, sono state considerate le distanze tra il baricentro della sorgente ed il POC più vicino, nello specifico:
 - a. Sorgente SS_1: 100 m;
 - b. Sorgente SS_2: 75 m;
 - c. Sorgente SS_3: 220m.
 - d. Sorgente SP1: considerata l'estensione della sorgente nel SP pari a tutto il Sito, in questo caso è stata inserita la distanza di 1 m.

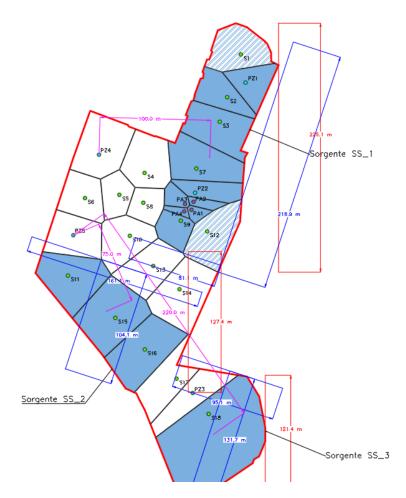


FIGURA 12 - DISTANZA DAI POC - SORGENTI SUOLO SUPERFICIALE (QUOTA ALLINEATA DI COLORE VIOLA)

7.5.4 PARAMETRI AMBIENTI OUTDOOR

Parametro	Simbolo	Default	Sito- Specifico	UM	Note				
Dati Meteo									
Velocità del vento	Uair	2.25	1.28	m/s	1				
Velocità del vento misurata nella centralina meteo	Uair,sm	2.25	1.36	m/s	1				
Altezza della centralina meteo	Hsm	10	3	m	1				
Altezza di riferimento per stima velocità del vento	BM	2	2	m					
Coefficiente P	р		0.15	-	default				
Portata di particolato per unità di superficie	Pe	6.9e-14	6.9e-14	g/cm/s²	default				
Dispers	ione in atmosfe	era							
Distanza recettore off site - ADF	POC ADF	100	100	m	default				
Coefficiente di dispersione trasversale	σу	10	10	m	default				
Coefficiente di dispersione verticale	σz	10	10	m	default				
Profondità della zona aerobica da p.c.	La Outdoor	1	1	m	default				

TABELLA 16 - CARATTERISTICHE AMBIENTI OUTDOOR

1. Considerato l'inquadramento climatico riportato al Par. 3.3 come rappresentativo della velocità del vento è stato considerato il valore 1,36 m/s in quanto minore registrato nella serie storica considerata. Tale velocità del vento si riferisce ad un'altezza di rilevazione di 3 m dal suolo. Pertanto, in accordo alle indicazioni di ISPRA, la velocità è stata riportata alla quota di 2 m (spessore di miscelazione indicato da ISPRA) tramite la formula empirica di S.R.Hanna et al. 1982 (APAT 2008, pag. 74) ottenendo quindi il valore di 1,28 m/s.

7.5.5 PARAMETRI AMBIENTI INDOOR

Parametro	Simbolo	Default	Sito- Specifico	UM	Note						
Caratteristiche edificio on-site											
Profondità delle fondazioni da p.c.	Z crack	0.15	0.15	m	default						
Spessore delle fondazioni	L crack	0.15	0.15	m	default						
Frazione areale di fratture indoor	η	0.01	0.01	m²/m²	default						
Rapporto tra volume indoor ed area di infiltrazione	Lb	2	2.7	m	default						
Contenuto volumetrico di acqua nelle fondazioni	θw,crack	0.12	0.12		default						
Contenuto volumetrico di aria nelle fondazioni	θa,crack	0.26	0.26	-	default						
Tasso di ricambio di aria indoor	ER	0.00014	0.00014	1/s	default						
Differenza di pressione tra outdoor e indoor	Δр	0	0	g/cm/s²	default						
Superficie totale coinvolta nell'infiltrazione	Ab	70	70	m²	default						
Permeabilità del suolo al flusso di vapore*	Kv	1,00E-12	1,00E-12	m²	default						
Perimetro delle fondazioni/muri	x crack	34	34	m	default						
Viscosità del vapore	µair	0.000181	0.000181	g/cm/s	default						
Flusso convettivo entrante nell'edificio	Qs	Calcolato	0.00e+0	L/min	default						
Profondità della zona aerobica dalle fondazioni	La Indoor	1	1	m	default						

TABELLA 17 - CARATTERISTICHE AMBIENTI INDOOR

Per gli ambienti indoor sono stati considerati valori di default in quanto maggiormente conservativi. Si fa presente che, come riportato nel MCS, gli edifici e baracche presenti saranno oggetto di demolizione e ricollocazione in altra zona all'interno del Sito.

8. CALCOLO DELLE CSR SITO SPECIFICHE

L'analisi di rischio in oggetto è stata svolta in modalità inversa per il calcolo delle Concentrazioni Soglia di Rischio in conformità con quanto indicato dal D.Lgs. 152/06 e successivo D.Lgs. 04/2008; le CSR rappresentano le concentrazioni che forniscono un rischio accettabile per il recettore uomo.

Sono quindi riportati i risultati relativi in modalità inversa (modalità backward) suddivisi per matrice ambientale con il calcolo delle CSR per ogni singola sorgente. Le CSR minori della rispettiva Crs sono in rosso nelle seguenti tabelle.

I files Risk-net 3.1.1 delle singole elaborazioni sono allegati al presente documento su supporto informatico in **Allegato 7**.

Dove compare per una CSR l'espressione ">1e+6", questo implica che la Concentrazione teorica sia maggiore della Massima concentrazione possibile. Tale condizione comporta che il contaminante anche se fosse presente puro non comporterebbe comunque rischi per quel percorso di migrazione/esposizione.

I seguenti paragrafi riportano quindi prima le tabelle con il calcolo delle CSR per ogni singola sorgente, seguite dalle tabelle che riportano le CSR risultanti dal cumulo tra le sorgenti del tutto o parzialmente sovrapposte.

Le singole sorgenti sono state cumulate nei diversi scenari sommando tra loro i rischi e gli indici di pericolo derivanti da ogni singola sorgente, correggendoli poi fino a rendere il rischio e l'indice di pericolo cumulativo accettabile. Le CSR sono state poi ridotte proporzionalmente alla riduzione dei rispettivi rischi.

Laddove, infine, una o più CSR risultino inferiori alla CSC di riferimento, si assumerà la CSR essere pari alla CSC e sarà esclusa dalla verifica del rischio cumulato.

8.1 CSR A PROTEZIONE DELL'UOMO PER IL SUOLO SUPERFICIALE (SS)

Il presente paragrafo contiene i risultati ottenuti in modalità inversa (backward mode) per i percorsi di esposizione a protezione dell'uomo dalle sorgenti nel suolo superficiale. Le seguenti tabelle riportano quindi le CSR sanitarie per lo scenario in oggetto di ogni sorgente.

In tutti i casi laddove le CSR siano risultate maggiori della rispettiva Csat sono state riportate alla rispettiva Cmax; dopodiché sono state effettuate eventuali ulteriori correzioni per avere un rischio cumulato accettabile.

Contaminante	CRS	CSRind	f	CSRcum	CSC	Csat	R (HH)	HI (HH)
	mg/kg	mg/kg	-	mg/kg	mg/kg	mg/kg	-	-
<u>Cadmio</u>	3.80e+0	38.93	8	4.87	2.00e+0	-	2.18e-10	1.25e-1
Nichel	1.51e+2	1506.8	5	301.4	1.20e+2	-	1.95e-9	1.98e-1
<u>Piombo</u>	5.40e+2	<u>72.85</u>		100.00	1.00e+2	-	-	-
<u>Zinco</u>	1.60e+3	22825.2	5.9	3868.7	1.50e+2	-	-	1.69e-1
DDD	1.40e-1	2.16	8	0.271	1.00e-2	1.06e+2	1.11e-7	1.25e-1
DDE	1.40e-1	1.72	8	0.215	1.00e-2	4.70e+1	1.25e-7	9.91e-3
DDT	1.40e-1	1.72	8	0.215	1.00e-2	9.26e+0	1.25e-7	5.95e-3
Benzo(a)antracene	1.10e+0	1.22		1.22	5.00e-1	1.66e+1	1.00e-6	-
Benzo(a)pirene	1.40e+0	0.122		0.122	1.00e-1	9.47e+0	1.00e-6	7.10e-3
Benzo(b)fluorantene	1.10e+0	1.22		1.22	5.00e-1	8.95e+0	1.00e-6	-
Benzo(k)fluorantene	6.90e-1	12.21		12.21	5.00e-1	4.68e+0	1.00e-6	-
Benzo(g,h,i)perilene	1.10e+0	1720.2	10	172.0	1.00e-1	4.09e+0	-	1.00e-1
Dibenzo(a,e)pirene	1.80e-1	1720.2	10	172.0	1.00e-1	2.74e+0	-	1.00e-1
Dibenzo(a,l)pirene	1.20e-1	0.00665		0.1000	1.00e-1	4.74e+1	-	-
Dibenzo(a,i)pirene	2.00e-1	0.00665		<u>0.1000</u>	1.00e-1	8.14e+0	-	-
Dibenzo(a,h)antracene	1.90e-1	<u>0.122</u>		0.122	1.00e-1	4.74e+1	1.00e-6	-
Indenopirene	7.80e-1	1.22		1.22	1.00e-1	3.69e+0	1.00e-6	-
Alifatici C13-C18	1.00e+1	6110.5	20	305.5	5.00e+1	6.79e+1	-	5.00e-2
Alifatici C19-C36	6.50e+1	122205.5	18	6789.2	5.00e+1	5.95e+0	-	5.56e-2
Aromatici C13-C22	1.00e+0	1833.1	18	101.8	5.00e+1	2.89e+2	-	5.56e-2
PCB Totali	9.50e-2	0.221		0.221	6.00e-2	5.45e+2	1.00e-6	-
Cumulato Outdoor (On	-site)						7.36e-6	1.00e+0
Cumulato Indoor (On-s	ite)						2.20e-9	2.36e-4

TABELLA 18 - CSR CUMULATIVE PER IL SUOLO SUPERFICIALE (SORGENTE SS_1)

Contaminante	CRS	Ins	Frazione Inserisci frazioni		Csat	CSR (HH)	CSR/fr (HH)			
		C<12	C>12	ТОТ		` ′	C<12	C>12	TOT	
	mg/kg	-	-	-	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
Alifatici C13-C18	1.00e+1	-	0.13	0.13	6.79e+1	3.06e+2	-	2.32e+3	2.32e+3	
Alifatici C19-C36	6.50e+1	-	0.86	0.86	5.95e+0	6.79e+3	-	7.94e+3	7.94e+3	
Aromatici C13-C22	1.00e+0	-	1.3e-2	1.3e-2	2.89e+2	1.02e+2	-	7.74e+3	7.74e+3	
Frazione Critica				CSR (HH)	-	2.32e+3	2.32e+3			

TABELLA 19 - CSR IDROCARBURI (MADEP) PER IL SUOLO SUPERFICIALE (SORGENTE SS_1)

Contaminante	CRS	CSRind	f	CSRcum	CSC	Csat	R (HH)	HI (HH)
	mg/kg	mg/kg	-	mg/kg	mg/kg	mg/kg	-	-
Mercurio elementare	1.60e+0	0.827		<u>1.000</u>	1.00e+0	3.13e+0	-	-
Metilmercurio	1.60e+0	7.61	1.76	4.32	1.00e+0	-	-	5.68e-1
DDD	2.20e-2	2.16	5	0.433	1.00e-2	1.06e+2	1.78e-7	2.00e-1
DDE	2.20e-2	1.72	5	0.343	1.00e-2	4.70e+1	2.00e-7	1.59e-2
DDT	2.20e-2	1.72	5	0.343	1.00e-2	9.26e+0	2.00e-7	9.51e-3
Benzo(a)pirene	3.60e-1	0.122		<u>0.122</u>	1.00e-1	9.47e+0	1.00e-6	7.10e-3
Benzo(g,h,i)perilene	2.60e-1	1720.2	5	344.0	1.00e-1	4.09e+0	-	2.00e-1
Indenopirene	2.30e-1	1.22		1.22	1.00e-1	3.69e+0	1.00e-6	-
Cumulato Outdoor (On-site)								1.00e+0
Cumulato Indoor (On-	5.08e-12	5.79e-6						

TABELLA 20 - CSR CUMULATIVE SUOLO SUPERFICIALE (SORGENTE SS_2)

Contaminante	CRS	CSRind	f	CSRcum	CSC	Csat	R (HH)	HI (HH)
	mg/kg	mg/kg	-	mg/kg	mg/kg	mg/kg	-	-
Benzo(a)pirene	2.10e-1	<u>0.122</u>		<u>0.122</u>	1.00e-1	9.47e+0	1.00e-6	7.10e-3
Benzo(g,h,i)perilene	1.50e-1	1720.2	1.003	1715.1	1.00e-1	4.09e+0	-	9.97e-1
Indenopirene	1.30e-1	1.22		1.22	1.00e-1	3.69e+0	1.00e-6	-
Cumulato Outdoor (Or	2.00e-6	1.00e+0						
Cumulato Indoor (On-	3.55e-12	1.99e-5						

TABELLA 21 - CSR CUMULATIVE SUOLO SUPERFICIALE (SORGENTE SS_3)

I superamenti delle CSR nel suolo superficiale sono per la maggior parte tutti dovuti ai percorsi diretti (ingestione e/o contatto dermico), relativamente ad inquinanti sempre non volatili sia organici (IPA) sia inorganici (Piombo). Risulta una criticità sanitaria per il percorso di inalazione vapori indoor per il Mercurio nella sorgente SS_2 nel poligono S11. Si fa presente che, nel poligono oggetto di superamento del Mercurio, ad oggi **non sono presenti spazi confinati**. Il percorso di inalazione vapori indoor è stato considerato nella totalità del Sito nell'ottica degli sviluppi futuri dell'area i quali prevederanno la demolizione delle strutture presenti e conseguente ricollocazione in aree interne la Sito.

Si riportano in Tavola 10 i punti di indagine dove si ha l'effettivo superamento delle CSR.

8.2 CSR A PROTEZIONE DELL'UOMO PER IL SUOLO PROFONDO (SP)

Il presente paragrafo contiene i risultati ottenuti in modalità inversa (backward mode) per i percorsi di esposizione a protezione dell'uomo dalle sorgenti nel suolo profondo. Le seguenti tabelle riportano quindi le CSR sanitarie per lo scenario in oggetto di ogni sorgente.

Contaminante	CRS	CSRind	f	CSRcum	CSC	Csat	R (HH)	HI (HH)
	mg/kg	mg/kg	-	mg/kg	mg/kg	mg/kg	-	-
Mercurio elementare	4.20e+1	5.98e-1		1.00e+0	1.00e+0	3.13e+0	-	-
Cumulato Outdoor (Or	-	-						
Cumulato Indoor (On-	-	-						

TABELLA 22 - CSR CUMULATIVE SUOLO PROFONDO (SORGENTE SP_1)

Risulta una criticità sanitaria per il percorso di inalazione vapori indoor per il Mercurio nella sorgente SP_1 e poligono S7. Si fa presente che, nel poligono oggetto di superamento del Mercurio S7, ad oggi sono presenti **spazi confinati i quali saranno oggetto di futura demolizione**.

Il percorso di inalazione vapori indoor è stato considerato nell'ottica degli sviluppi futuri dell'area, i quali prevederanno, la demolizione delle strutture presenti e conseguente ricollocazione in aree interne la Sito.

Si riportano in Tavola 11 i punti di indagine dove si ha l'effettivo superamento delle CSR.

8.1 CSR A PROTEZIONE DELLA RISORSA IDRICA (POC=0)

Si fa presente che per il comparto acque sotterranee le CSR, per tutti i parametri che hanno mostrato almeno un superamento dei limiti, corrispondono alle CSC in quanto tutti i poligoni sono ubicati a valle idrogeologica.

Contaminante	CSR
	μg/l
FLUORURI	<u>1500</u>
BORO	<u>1000</u>
FERRO	<u>200</u>
MANGANESE	<u>50</u>
PIOMBO	<u>10</u>
IDROCARBURI TOTALI	<u>350</u>

TABELLA 23 - CSR PER LA PROTEZIONE DELLA RISORSA IDRICA

Si riportano in Tavola 12 i punti di indagine dove si ha l'effettivo superamento delle CSR.

9. ATTIVAZIONE DEL PERCORSO DI LISCIVIAZIONE PER LA STIMA DELLE CONCENTRAZIONI AL POC

9.1 SUOLO SUPERFICIALE (SS)

Contaminante	CRS	Csat	csc	On-site	On-site		Off-site
Containinante	CNO	Usai	636	Falda	Falda	Falda	Falda
	mg/kg	mg/kg		mg/L	ug/L	mg/L	ug/L
Cadmio	3,80E+00	-	5	2,47E-03	2,47E+00	2,47E-03	2,47E+00
Nichel	1,51E+02	-	20	3,63E-01	3,63E+02	3,63E-01	3,63E+02
Piombo	5,40E+02	-	10	1,36E-02	1,36E+01	1,36E-02	1,36E+01
Zinco	1,60E+03	-	3000	1,28E-01	1,28E+02	1,28E-01	1,28E+02
DDD	1,40E-01	1,06E+02	1,00E-01	1,86E-05	1,86E-02	1,86E-05	1,86E-02
DDE	1,40E-01	4,70E+01	1,00E-01	1,86E-05	1,86E-02	1,86E-05	1,86E-02
DDT	1,40E-01	9,26E+00	1,00E-01	1,30E-05	1,30E-02	1,30E-05	1,30E-02
Benzo(a)antracene	1,10E+00	1,66E+01	1,00E-01	9,75E-05	9,75E-02	9,75E-05	9,75E-02
Benzo(a)pirene	1,40E+00	9,47E+00	1,00E-02	3,74E-05	3,74E-02	3,74E-05	3,74E-02
Benzo(b)fluorantene	1,10E+00	8,95E+00	1,00E-01	2,88E-05	2,88E-02	2,88E-05	2,88E-02
Benzo(k)fluorantene	6,90E-01	4,68E+00	5,00E-02	1,84E-05	1,84E-02	1,84E-05	1,84E-02
Benzo(g,h,i)perilene	1,10E+00	4,09E+00	1,00E-02	1,09E-05	1,09E-02	1,09E-05	1,09E-02
Dibenzo(a,e)pirene	1,80E-01	2,74E+00		4,36E-07	4,36E-04	4,36E-07	4,36E-04
Dibenzo(a,l)pirene	1,20E-01	4,74E+01		9,86E-07	9,86E-04	9,86E-07	9,86E-04
Dibenzo(a,i)pirene	2,00E-01	8,14E+00		1,30E-07	1,30E-04	1,30E-07	1,30E-04
Dibenzo(a,h)antracene	1,90E-01	4,74E+01	1,00E-02	1,56E-06	1,56E-03	1,56E-06	1,56E-03
Indenopirene	7,80E-01	3,69E+00	1,00E-01	6,28E-06	6,28E-03	6,28E-06	6,28E-03
Alifatici C13-C18	1,00E+01	6,79E+01	3,50E+02	2,30E-04	2,30E-01	2,30E-04	2,30E-01
Alifatici C19-C36	6,50E+01	5,95E+00	3,50E+02	2,56E-06	2,56E-03	2,56E-06	2,56E-03
Aromatici C13-C22	1,00E+00	2,89E+02	3,50E+02	3,14E-03	3,14E+00	3,14E-03	3,14E+00
PCB Totali	9,50E-02	5,45E+02	1,00E-02	1,91E-05	1,91E-02	1,91E-05	1,91E-02

TABELLA 24 - CONCENTRAZIONE ATTESE AL POC (ON SITE E OFF SITE) - SORGENTE SS_1

Contaminante	CRS	Coot	csc	On-site	On-site		Off-site
	CKS	Csat	CSC	Falda	Falda	Falda	Falda
	mg/kg	mg/kg	ug/L	mg/L	ug/L	mg/L	ug/L
Cloruro di mercurio	1,60E+00	-	1	6,73E-03	6,73E+00	6,44E-03	6,44E+00
DDD	2,20E-02	1,06E+02	1,00E-01	4,10E-06	4,10E-03	3,92E-06	3,92E-03
DDE	2,20E-02	4,70E+01	1,00E-01	4,10E-06	4,10E-03	3,92E-06	3,92E-03
DDT	2,20E-02	9,26E+00	1,00E-01	2,86E-06	2,86E-03	2,74E-06	2,74E-03
Benzo(a)pirene	3,60E-01	9,47E+00	1,00E-02	1,35E-05	1,35E-02	1,29E-05	1,29E-02
Benzo(g,h,i)perilene	2,60E-01	4,09E+00	1,00E-02	3,62E-06	3,62E-03	3,46E-06	3,46E-03
Indenopirene	2,30E-01	3,69E+00	1,00E-01	2,59E-06	2,59E-03	2,48E-06	2,48E-03

TABELLA 25 - CONCENTRAZIONI ATTESE AL POC (ON SITE E OFF SITE) - SORGENTE SS_2

Contaminante	CRS	Csat	csc	On-site	On-site			
Contaminante	CKS	USAL	CSC	Falda	Falda	Falda	Falda	
	mg/kg	mg/kg	ug/L	mg/L	ug/L	mg/L	ug/L	
Benzo(a)pirene	2,10E-01	9,47E+00	1,00E-02	6,13E-06	6,13E-03	6,07E-06	6,07E-03	
Benzo(g,h,i)perilene	1,50E-01	4,09E+00	1,00E-02	1,63E-06	1,63E-03	1,61E-06	1,61E-03	
Indenopirene	1,30E-01	3,69E+00	1,00E-01	1,14E-06	1,14E-03	1,13E-06	1,13E-03	

TABELLA 26 - CONCENTRAZIONI ATTESE AL POC (ON SITE E OFF SITE) - SORGENTE SS_3

9.2 SUOLO PROFONDO (SP)

Contaminante	CRS	Csat	CSC	On-site	On-site		Off-site
Containinante	CNO	Usat	636	Falda	Falda	Falda	Falda
	mg/kg	mg/kg	ug/L	mg/L	ug/L	mg/L	ug/L
Arsenico	2,90E+01	-	10	6,67E-02	6,67E+01	6,67E-02	6,67E+01
Cadmio	6,20E+00	-	5	2,18E-02	2,18E+01	2,18E-02	2,18E+01
Cobalto	2,30E+01	-	50	1,24E-02	1,24E+01	1,24E-02	1,24E+01
Cloruro di mercurio	4,20E+01	-	1	5,57E-01	5,57E+02	5,57E-01	5,57E+02
Nichel	2,40E+02	-	20	1,15E-01	1,15E+02	1,15E-01	1,15E+02
Piombo	5,64E+02	-	10	3,57E-01	3,57E+02	3,57E-01	3,57E+02
Rame	5,10E+02	-	1000	3,86E-01	3,86E+02	3,86E-01	3,86E+02
Zinco	2,01E+03	-	3000	1,10E+00	1,10E+03	1,10E+00	1,10E+03
Alifatici C13-C18	2,78E+02	6,33E+01	350	6,90E-03	6,90E+00	6,90E-03	6,90E+00
Alifatici C19-C36	1,86E+03	5,55E+00	350	1,04E-06	1,04E-03	1,04E-06	1,04E-03
Aromatici C13-C22	2,60E+01	2,70E+02	350	3,86E-01	3,86E+02	3,86E-01	3,86E+02
PCB Totali	2,00E-01	5,08E+02	0,01	1,90E-04	1,90E-01	1,90E-04	1,90E-01
DDD	1,00E-01	9,87E+01	0,1	6,30E-05	6,30E-02	6,30E-05	6,30E-02
DDE	1,00E-01	4,39E+01	0,1	6,30E-05	6,30E-02	6,30E-05	6,30E-02
DDT	1,00E-01	8,64E+00	0,1	4,40E-05	4,40E-02	4,40E-05	4,40E-02
Benzo(a)antracene	5,80E-01	1,55E+01	0,1	2,43E-04	2,43E-01	2,43E-04	2,43E-01
Benzo(a)pirene	4,60E-01	8,83E+00	0,01	5,82E-05	5,82E-02	5,82E-05	5,82E-02
Benzo(b)fluorantene	5,90E-01	8,35E+00	0,1	7,32E-05	7,32E-02	7,32E-05	7,32E-02
Benzo(g,h,i)perilene	3,70E-01	3,82E+00	0,01	1,74E-05	1,74E-02	1,74E-05	1,74E-02
Dibenzo(a,e)pirene	1,80E-01	2,56E+00	-	2,06E-06	2,06E-03	2,06E-06	2,06E-03
Dibenzo(a,i)pirene	2,80E-01	7,59E+00	-	8,63E-07	8,63E-04	8,63E-07	8,63E-04
Dibenzo(a,h)antracene	1,20E-01	4,42E+01	0,01	4,67E-06	4,67E-03	4,67E-06	4,67E-03
Indenopirene	3,00E-01	3,44E+00	0,1	1,14E-05	1,14E-02	1,14E-05	1,14E-02

TABELLA 27 - CONCENTRAZIONI ATTESE AL POC (ON SITE E OFF SITE) - SORGENTE SP_1

Dall'analisi dei risultati del modello analitico utilizzato risultano concentrazioni attese ai POC maggiori delle rispettive CSC per le acque di falda. Dalle analisi dirette effettuate in fase di caratterizzazione non sono emersi tali superamenti.

I composti per cui il modello ha stimato criticità ambientali verranno ricercati nell'ambito del monitoraggio di falda previsto.

10. OBIETTIVI DI BONIFICA

Di seguito si riportano le tabelle riassuntive relativamente agli obiettivi di bonifica (CSR) relativi alle diverse matrici ambientali, dove per obiettivi si intendono quelle CSR che risultano inferiori alle concentrazioni massime rilevate nella rispettiva sorgente per una data matrice ambientale.

Si riportano in Tavola 13 i punti di indagine per cui si prevede un intervento di bonifica.

10.1 SUOLO SUPERFICIALE (SS)

Gli obiettivi di bonifica a protezione dell'uomo sono sintetizzati nella seguente tabella.

Contaminante	CRS	CSRcum
	mg/kg	mg/kg
<u>Piombo</u>	5.40e+2	<u>100.00</u>
Benzo(a)pirene	1.40e+0	<u>0.122</u>
Dibenzo(a,l)pirene	1.20e-1	<u>0.1000</u>
Dibenzo(a,i)pirene	2.00e-1	<u>0.1000</u>
Dibenzo(a,h)antracene	1.90e-1	<u>0.122</u>

TABELLA 28 - OBIETTIVI DI BONIFICA SUOLO SUPERFICIALE - SORGENTE SS_1

Contaminante	CRS	CSRcum
	mg/kg	mg/kg
Benzo(a)pirene	3.60e-1	<u>0.122</u>

TABELLA 29 – OBIETTIVI DI BONIFICA SUOLO SUPERFICIALE (SORGENTE SS_2)

Contaminante	CRS	CSRcum
	mg/kg	mg/kg
Benzo(a)pirene	2.10e-1	<u>0.122</u>

TABELLA 30 – OBIETTIVI DI BONIFICA SUOLO SUPERFICIALE (SORGENTE SS_3)

10.2 SUOLO PROFONDO (SP)

Non risultano criticità sanitarie per il comparto suolo profondo.

La CSR indicata nel Par. 8.2 pari a 1 mg/kg peri il Mercurio vale solo per il poligono S7 relativamente al SOLO percorso di inalazione vapori indoor. Nel poligono indicato in futuro **sarà preclusa la presenza di spazi confinati**.

Si ricorda che allo stato attuale sono presenti delle baracche, le quali saranno oggetto di demolizione e ricollocazione in aree interne al Sito.

11. CONCLUSIONI

È stata sviluppata un'Analisi di Rischio sito specifica (AdR) del Sito nel quale è ubicata la pista ciclabile "Ivo Mancini" nel Comune di Collesalvetti (LI).

L'area in esame è stata interessata da una Indagine di Caratterizzazione, eseguita nei mesi di marzo e aprile del 2022 in contraddittorio con ARPA e da un'indagine di Caratterizzazione integrativa effettuata anch'essa in contraddittorio con ARPA nel novembre 2022. Le risultanze delle suddette indagini costituiscono i dati di base per lo sviluppo del presente studio.

La presente analisi di rischio è stata elaborata considerando un modello concettuale più cautelativo possibile, considerando i ricettori umani più sensibili e la presenza di fabbricati ad uso residenziale con le caratteristiche costruttive e geometriche più penalizzanti.

Il Modello Concettuale del Sito (MCS) è stato quindi ricostruito in base ai risultati delle indagini ambientali svolte e nell'ottica più cautelativa possibile in termini di ricettori umani.

L'AdR è stata sviluppata, per quanto riguarda i suoli insaturi, considerando i superamenti delle CSC di cui alla Tabella 1 Colonna A.

È stata quindi condotta un'analisi di rischio igienico-sanitaria sito-specifica, conformemente a quanto previsto dal D.Lgs. 152/06 e s.m.i (AdR), in modalità inversa (backward), per la definizione della massima concentrazione di contaminanti compatibile con un rischio accettabile per il recettore (stima CSR sito-specifiche).

Il Modello Concettuale del Sito (MCS) è stato ricostruito in base ai risultati delle indagini ambientali svolte e nell'ottica più cautelativa possibile in termini di ricettori umani.

Le matrici ambientali suolo insaturo superficiale e profondo e le acque di falda sono state individuate come potenziali sorgenti secondarie di contaminazione.

Lo stato di potenziale contaminazione per un uso residenziale è risultato il seguente:

- Suolo superficiale: Cadmio, Nichel, Piombo, Zinco, Mercurio, DDx, IPA, Idrocarburi C>12 e PCB totali;
- Suolo profondo: Arsenico, Cadmio, Cobalto, Mercurio, Nichel, Piombo, Rame, Zinco, Idrocarburi C>12, DDx, IPA e PCB totali.

Lo stato di potenziale contaminazione per le acque sotterranee ha interessato unicamente composti non volatili per i quali non sussistono rischi sanitari; per quanto riguarda il bersaglio ambientale si assume CSR=CSC in quanto tutti i poligoni risultano ubicati a valle idrogeologica.

Le aree sorgente sono state definite utilizzando il metodo di rappresentazione basato sulla scomposizione dell'area in poligoni di Thiessen.

Sono state individuate:

- tre distinte sorgenti di potenziale contaminazione nel suolo superficiale denominate SS_1, SS_2, SS_3;
- una sorgente di potenziale contaminazione nel suolo profondo denominata SP_1.

Sono state ritenute attive le seguenti vie di migrazione:

- 1. Esposizione diretta mediante ingestione e contatto dermico.
- 2. Aerodispersione delle particelle fini con conseguente inalazione di polveri outdoor.
- Volatilizzazione dei composti volatili e dispersione in aria con conseguente inalazione di vapori Indoor/Outdoor

Per quanto riguarda il percorso di inalazione vapori indoor è stato considerato cautelativamente anche per il poligono S11 in cui non sono presenti spazi confinati. Allo stato attuale sono presenti delle baracche nel poligono S11 che saranno oggetto di demolizione e ricollocazione in aree interne al Sito.

Sono stati identificati, secondo un'ottica cautelativa, i seguenti bersagli sulla base dello scenario attuale:

<u>residenti on-site indoor/outdoor (adulti/bambini);</u>

I bersagli ambientali sono stati individuati nelle acque sotterranee a valle del sito.

Considerate le <u>CSR SANITARIE</u> calcolate:

- risultano criticità per alcune sorgenti nel Suolo Superficiale (SS_1, SS_2 e SS_3); le criticità sono principalmente dovute all'esposizione diretta (ingestione e contatto dermico);
- non risultano criticità sanitarie da SP;
- non risulta infine alcuna criticità sanitaria relativamente alle sorgenti in falda.

Con riferimento al bersaglio ambientale si fa presente che ad oggi tale percorso risulta <u>non attivo</u> in quanto durante le due campagne di monitoraggio delle acque sotterranee condotte nel 2021 e 2022 non sono stati rinvenuti, sia dal laboratorio di parte sia di ARPAT, superamenti riconducibili ai composti che hanno mostrato valori non conformi nel suolo superficiale e profondo. Si fa presente che i parametri non conformi che hanno mostrato una diffusione maggiore nei suoli (IPA e Fitofarmaci) in fase di caratterizzazione sono risultati nella maggior parte dei casi al di sotto del limite di rilevabilità strumentale sia nei piezometri ubicati a monte idrogeologico sia nei piezometri ubicati a valle. Si fa presente inoltre che in relazione alla contaminazione riscontrata nella matrice acque sotterranee si prevede, come misura di Messa in Sicurezza di Emergenza (MISE), l'installazione di una barriera

idraulica sui due piezometri ubicati a valle idrogeologica denominati PZ4 e PZ5 ed un monitoraggio delle acque sotterranee della durata di due anni e frequenza trimestrale. Considerata l'attivazione delle misure di MISE con conseguente monitoraggio si prevede di attivare il percorso di lisciviazione dalle sorgenti nel suolo superficiale e suolo profondo al fine di stimare le concentrazioni attese ai POC individuati nel PZ4 e PZ5. Tali valori potranno essere confrontati nell'ambito dei monitoraggi al fine di calibrare il modello implementato con le misure dirette che verranno effettuate.

Si prevede quindi l'esecuzione delle seguenti misure di messa in sicurezza:

- Attivazione di misure di Pump & Stock con emungimento dai due piezometri ubicati a valle idrogeologica Pz4 e Pz5;
- Monitoraggio delle acque sotterranee della durata di 2 anni e frequenza trimestrale finalizzato alla ricerca di tutti i parametri per cui il modello implementato ha stimato un rischio non accettabile per la falda;
- Rimozione cumuli.

12. GESTIONE RIFIUTI

Per quanto riguarda i terreni presenti in cantiere la totalità dei materiali prodotti proviene dalle attività di caratterizzazione eseguite. Per ogni singolo scavo sono stati prodotti due cumuli a differente profondità:

- cumulo 1 profondità 0,0 -1,0 m (suolo superficiale);
- cumulo 2 profondità 1,0 -4,0 m (suolo profondo).

Le attività di scavo e di gestione in sito (recupero) dei materiali prodotti nei siti oggetto di bonifica (intendendo i siti per i quali è stato avviato il procedimento dal punto di vista amministrativo ex. artt. 242, 244, 250) sono regolate dal titolo V (art. 25 e 26) del DPR 120/2017.

Gli articoli 25 e 26 del DPR del 13 giugno 2017, n. 120 "Regolamento recante la disciplina semplificata della gestione delle terre e rocce da scavo", sono riferiti alla gestione delle terre e rocce da scavo con riutilizzo esclusivamente interno al sito di produzione sottoposto a bonifica e pertanto il materiale scavato, conforme alle condizioni di utilizzo, appartiene alla fattispecie delle terre e rocce da scavo escluse dall'ambito di applicazione della normativa sui rifiuti.

Nello specifico l'art. 26 comma 2 consente il riutilizzo delle TRS se:

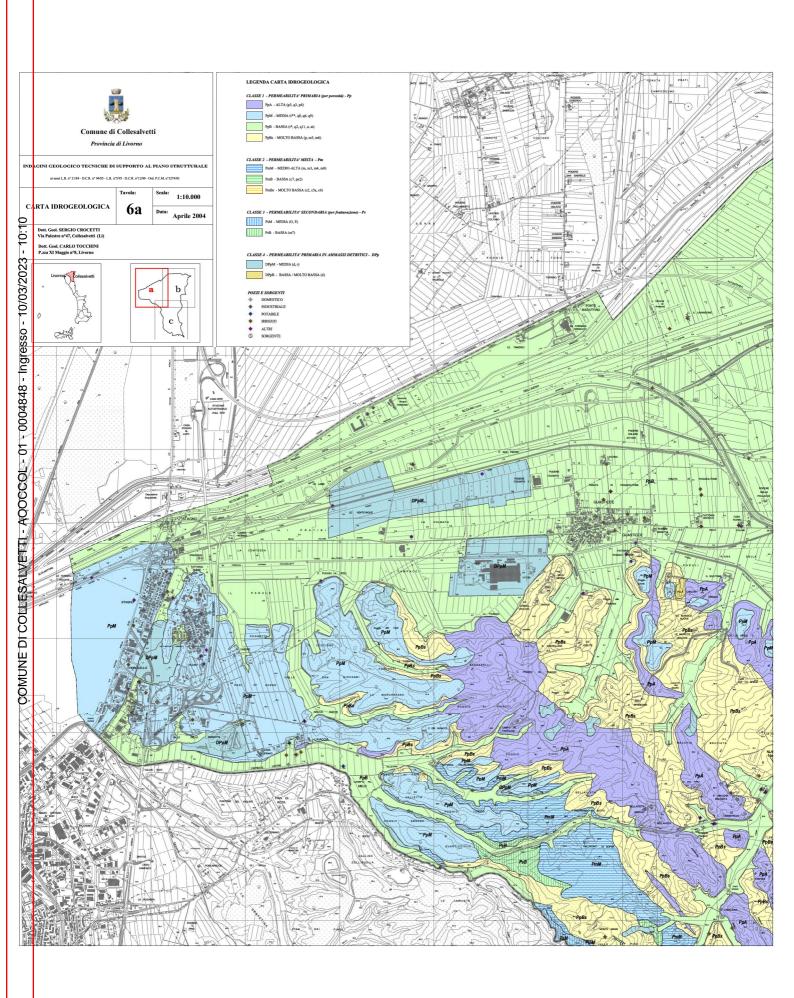
- i risultati dei terreni campionati risultano conformi alle CSR (preventivamente approvate);
- ➤ le TRS sono utilizzate nella medesima area assoggettata alla AdR e nel rispetto del modello concettuale di riferimento per l'AdR.

I risultati dei terreni campionati confrontati con le CSR del presente documento, stabilite sia per il suolo superficiale sia per il suolo profondo indicano che i soli cumuli non conformi sono i cumuli che ricadono all'interno dei poligoni successivamente indicati:

- suolo superficiale (cumuli provenienti da scavo 0,0-1,0m)
- cumulo dei poligoni S2, S7, S9, S11, S18;
- cumulo proveniente dallo scavo del PZ1;
- > suolo profondo (cumuli provenienti da scavo 1,0-4,0m)
- cumulo del poligono S7;

I cumuli ricadenti nei poligoni sopra indicati saranno gestiti come rifiuto.

Inoltre, nel suolo profondo di due cumuli denominati S12 e S3 sui riporti campionati è stato eseguito il test di cessione. I risultati correlati con i limiti del DM 05/02/1998 superano i limiti per i parametri Nichel, Rame, Cromo totale, Piombo. Alla luce delle criticità ambientali questi due cumuli saranno gestiti come rifiuto.



COMUNE DI COLLESALVETTI (LI)

Analisi di Rischio sanitaria e ambientale Pista Ciclabile Ivo Mancini Via Berlinguer, Loc. Stagno SITO LI 1148

Allegato 1 – Dati geognostici

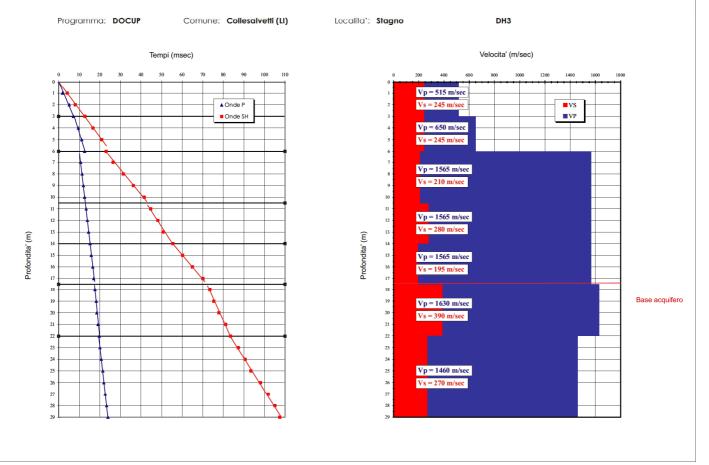
PHA, RAFANELLIA, TOCCHINIC, Comune di Collesalvetti SO47_2 Localita': Stagno - Comune di Collesalvelli (UI) 1:150 16/11/98 Data Sondaggo n. Marcastera e metodo di perforazione: LIVELLI ACQUA Carotaggio continuo con carotiere semplice PROPONDITA' to MATTINO Campione elmaneggiato Campione a percussione Data Н Data H Campione ind. a pressions Prova di permeabilita' Campione S.P.T. Campione da Vana Test Campione ind. rotativo O LUGEON DESCRIZIONE LITOLOGICA E Sabble ful limose con argina di color nocciola 1,00 1,40 0,70 COMUNE DI COLLESALVETTI - AOOCCOL - 01 - 0004848 - Ingresso - 10/03/2023 - 10:10 Argilla avana con striature grigle, ricca in inclusi vegetali 1,80 2,10 Argilla grigia scura con fiammature nere di materiale organico 0.20 3,10 Torba e limi argillosi saturi di color nero 1.20 17.00 Base acquifero Argille grigio-azzurro płastiche 1,40 18.50 Sondaggio eseguito dalla data ICHNOGEO s.a.s.

Comune di Collesalvetti SO47_3 Localita': Stagno - Comune di Collesalvetti (LI) Data 16/11/98 1:150 SCALA Sondaggio p. Americatura e metodo di perforazione: LIVELLI ACQUA
PROFONDITA' m SERA Carologgio continuo con carollere semplice Camplone rimaneggiato Campione a percussione O LEFRANC Data Fore Campione S.P.T. Campione ind. a pressione Prova di permeabilita' Campione da Vana Test Campione ind. rotativo O LUGEON Sezione DESCRIZIONE LITOLOGICA COMUNE DI COLLESALVETTI - AOOCCOL - 01 - 0004848 - Ingresso - 10/03/2023 - 10:10 Riporto elerogeneo (macerie, terra, ghiala etc.) Torba nera inconsistente Malariale organico gigio-nere niso a sattita sciota gigia 1,50 Base acquifero 1,10 15,30 Argita gigis mediamente consistente 1,20 16.20 2.00 1.40 17.00 Argita grigio-assara abbiastassa consistente Sondaggio eseguito dalla ditta ICHNOGEO s.a.s

COMUNE DI COLLESALVETTI - AOOCCOL - 01 - 0004848 - Ingresso - 10/03/2023 - 10:10

龙

Perforazione a carotaggio continuo con carotiere samplice diam. 101. Posa in opera di rivestimento provvisorio diam. 127 fino a mt. 19.50



Dir. Gen. delle Politiche Territoriali e Ambientali SERVIZIO SISMICO REGIONALE DITTA ESECUTRICE:

METHODO 5.7.1 DATA ESECUZIONE: Novembre 2006

UNIONE EUROPEA

Tavola nº: 2C

COMUNE DI COLLESALVETTI (LI)

Analisi di Rischio sanitaria e ambientale Pista Ciclabile Ivo Mancini Via Berlinguer, Loc. Stagno SITO LI 1148

Allegato 2 - Risultati indagini - suolo e sottosuolo

													ARPAT		ARPAT
		Punto	PZ1	PZ2	PZ3	PZ4	PZ5	S1	S1	S2	S2	S3	S3	S3	S3
		Profondità	0-1M	0-1M	0-1M	0-1M	0-1M	0-1M	1-4,1M	0-1M	1-4,4M	0-1M	0-1M	1-4,4M	1-4,4M
		Data	22/03/2022	22/03/2022	22/03/2022	22/03/2022	22/03/2022	08/04/2022	08/04/2022	08/04/2022	08/04/2022	08/04/2022	08/04/2022	08/04/2022	08/04/2022
Parametro	u.m.	CSC (A)													
Arsenico	mg/kg s.s.	20,00	5,90	5,70	2,80	5,00	5,80	5,40	8,50	8,30	10,00	6,90	10,00	9,50	7,70
Berillio	mg/kg s.s.	2,00	0,38	0,42	0,30	0,39	0,43	0,40	0,98	0,42	1,00	0,46	1,10	0,81	0,80
Cadmio	mg/kg s.s.	2,00	0,13	1,60	< 0,057	< 0,060	< 0,085	0,12	< 0,21	0,15	0,25	< 0,11	< 0,2	0,25	< 0,2
Cobalto	mg/kg s.s.	20,00	5,70	6,50	4,80	8,60	6,90	6,80	14,00	6,60	15,00	7,90	9,10	23,00	12,00
Cromo totale	mg/kg s.s.	150,00	24,00	34,00	15,00	47,00	23,00	28,00	67,00	30,00	76,00	33,00	66,00	100,00	83,00
Cromo (VI)	mg/kg s.s.	2,00	0,16	0,23	< 0,059	0,11	0,18	0,17	0,48	0,30	0,47	0,27	1,20	0,61	1,10
Mercurio	mg/kg s.s.	1,00	0,17	0,15	0,04	0,05	0,10	0,14	0,13	0,29	0,29	0,13	0,10	0,18	0,10
Nichel	mg/kg s.s.	120,00	28,00	32,00	14,00	49,00	25,00	34,00	77,00	37,00	92,00	42,00	50,00	240,00	82,00
Piombo	mg/kg s.s.	100,00	41,00	170,00	9,90	13,00	15,00	29,00	29,00	50,00	40,00	26,00	24,00	37,00	20,00
Rame	mg/kg s.s.	120,00	18,00	29,00	11,00	17,00	15,00	24,00	29,00	29,00	37,00	20,00	19,00	33,00	19,00
Vanadio	mg/kg s.s.	90,00	17,00	19,00	12,00	17,00	18,00	16,00	36,00	29,00	38,00	19,00	46,00	34,00	41,00
Zinco	mg/kg s.s.	150,00	67,00	460,00	34,00	39,00	42,00	57,00	86,00	69,00	100,00	51,00	60,00	93,00	54,00
Amianto (ricerca quantitativa)	mg/kg s.s.	1000,00	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 120	< 1000	< 120
Idrocarburi C<=12	mg/kg s.s.	10,00	< 0,2	< 0,18	< 0,2	< 0,21	< 0,23	< 0,18	< 0,18	< 0,22	< 0,21	< 0,22	< 1	< 0,22	< 1
Idrocarburi C>12	mg/kg s.s.	50,00	4,50	4,10	< 1,1	1,50	< 1,7	11,00	180,00	13,00	130,00	7,60	18,00	170,00	280,00
PCB totali	mg/kg s.s.	0,06	0,00	0,01	0,00	0,00	0,00	0,00	< 0,00063	< 0,0006	< 0,0013	< 0,00066	0,01	< 0,00065	0,07
Alaclor	mg/kg s.s.	0,01	< 0,0038	< 0,00047	< 0,00013	< 0,00014	< 0,00039	< 0,00021	< 0,00051	< 0,00048	< 0,0011	< 0,00053	< 0,001	< 0,00052	< 0,001
Aldrin	mg/kg s.s.	0,01	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,00021	< 0,00051	< 0,00048	< 0,0011	< 0,00053	< 0,001	< 0,00052	< 0,001
Atrazina	mg/kg s.s.	0,01	< 0,0038	< 0,00047	< 0,00013	< 0,00014	< 0,00039	< 0,00021	< 0,00051	< 0,00048	< 0,0011	< 0,00053	< 0,001	< 0,00052	< 0,001
alfa - esaclorocicloesano	mg/kg s.s.	0,01	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,00021	< 0,00051	< 0,00048	< 0,0011	< 0,00053	< 0,001	< 0,00052	< 0,001
beta - esaclorocicloesano	mg/kg s.s.	0,01	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,00021	< 0,00051	< 0,00048	< 0,0011	< 0,00053	< 0,001	< 0,00052	< 0,001
gamma - esaclorocicloesano (Lindano)	mg/kg s.s.	0,01	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,00021	< 0,00051	< 0,00048	< 0,0011	< 0,00053	< 0,001	< 0,00052	< 0,001
Clordano (cis, trans)	mg/kg s.s.	0,01	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,001	< 0,0001	< 0,001
DDD, DDT, DDE	mg/kg s.s.	0,01	0,14	0,01	0,00	< 0,0005	0,00	0,00	0,00	0,05	0,09	0,00	0,01	0,01	0,01
Dieldrin	mg/kg s.s.	0,01	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,00021	< 0,00051	< 0,00048	< 0,0011	< 0,00053	< 0,001	< 0,00052	< 0,001
Endrin	mg/kg s.s.	0,01	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,00021	< 0,00051	< 0,00048	< 0,0011	< 0,00053	< 0,001	< 0,00052	< 0,001
Sommatoria PCDD, PCDF (conversione T.E.)	mg/kg s.s.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Benzo (a) antracene	mg/kg s.s.	0,50	0,85	0,09	0,00	0,00	0,11	0,02	0,04	1,10	0,07	0,03	0,10	0,05	0,04
Benzo (a) pirene	mg/kg s.s.	0,10	0,73	0,04	0,00	0,00	0,02	0,02	0,03	1,40	0,12	0,04	0,12	0,07	0,05
Benzo (b) fluorantene	mg/kg s.s.	0,50	1,10	0,10	0,00	0,00	0,13	0,02	0,02	1,10	0,10	0,02	0,12	0,04	0,06
Benzo (k) fluorantene	mg/kg s.s.	0,50	0,51	0,05	0,00	0,00	0,07	0,02	0,02	0,69	0,07	0,03	0,06	0,05	0,03
Benzo (g,h,i) perilene	mg/kg s.s.	0,10	0,72	0,08	0,00	0,00	0,06	0,02	0,02	0,77	0,11	0,03	0,09	0,04	0,06
Crisene	mg/kg s.s.	5,00	0,96	0,09	0,00	0,00	0,10	0,03	0,05	1,60	0,24	0,05	0,13	0,08	0,06
Dibenzo (a,e) pirene	mg/kg s.s.	0,10	0,14	0,01	0,00	0,00	0,01	0,01	0,00	0,10	0,04	0,01	0,02	0,01	0,02
Dibenzo (a,l) pirene	mg/kg s.s.	0,10	< 0,0038	< 0,00047	< 0,00013	< 0,00014	< 0,00039	0,01	0,01	0,12	0,06	0,01	< 0,01	0,02	< 0,01
Dibenzo (a,i) pirene	mg/kg s.s.	0,10	0,12	0,01	0,00	0,00	< 0,00039	0,00	0,01	0,20	0,07	0,01	0,01	0,01	0,02
Dibenzo (a,h) pirene	mg/kg s.s.	0,10	0,03	< 0,00047	< 0,00013	< 0,00014	< 0,00039	< 0,0011	< 0,0025	0,08	0,03	< 0,0026	< 0,01	< 0,0026	0,02
Dibenzo (a,h) antracene	mg/kg s.s.	0,10	< 0,0038	< 0,00047	< 0,00013	< 0,00014	< 0,00039	0,01	0,01	0,19	0,03	0,01	0,02	0,02	0,01
Indenopirene	mg/kg s.s.	0,10	0,72	0,07	0,00	0,00	0,08	0,02	0,02	0,51	0,08	0,03	0,08	0,05	0,05
Pirene	mg/kg s.s.	5,00	1,30	0,11	0,00	0,00	0,09	0,04	0,10	2,10	0,12	0,07	0,13	0,10	0,07
Sommatoria IPA	mg/kg s.s.	10,00	7,10	0,65	0,02	0,02	0,67	0,22	0,31	9,90	1,10	0,35	< 1	0,55	< 1

								ARPAT		ARPAT				ARPAT
								7.0.0.711		7 11 11 7 11				7
		Punto	S4	S4	S5	S5	S6	S6	S6	S6	S7	S7	S8	S8
		Profondità	0-1M	1-3,9M	0-1M	1-4,4M	0-1M	0-1M	1-2,7M	1-2,7M	0-1M	1-3,7M	0-1M	0-1M
		Data	07/04/2022	07/04/2022	07/04/2022	07/04/2022	06/04/2022	06/04/2022	06/04/2022	06/04/2022	11/04/2022	11/04/2022	06/04/2022	06/04/2022
Parametro	u.m.	CSC (A)												
Arsenico	mg/kg s.s.	20,00	6,60	4,90	5,40	2,10	4,50	9,00	5,00	5,10	9,40	11,00	5,30	13,00
Berillio	mg/kg s.s.	2,00	0,36	0,45	0,30	0,21	0,40	1,10	0,55	1,60	0,45	0,78	0,31	1,00
Cadmio	mg/kg s.s.	2,00	0,43	0,10	< 0,12	< 0,046	< 0,092	< 0,2	< 0,11	< 0,2	3,80	0,74	< 0,093	< 0,2
Cobalto	mg/kg s.s.	20,00	5,80	6,30	4,00	3,80	8,50	11,00	11,00	13,00	7,90	16,00	5,30	14,00
Cromo totale	mg/kg s.s.	150,00	22,00	21,00	22,00	19,00	19,00	55,00	23,00	60,00	43,00	66,00	22,00	74,00
Cromo (VI)	mg/kg s.s.	2,00	0,15	0,15	0,19	0,05	0,14	0,50	0,15	0,20	0,41	0,60	0,25	1,40
Mercurio	mg/kg s.s.	1,00	0,08	< 0,045	0,09	0,04	0,06	0,10	< 0,054	< 0,1	0,19	42,00	0,06	0,10
Nichel	mg/kg s.s.	120,00	21,00	24,00	15,00	22,00	26,00	33,00	32,00	43,00	39,00	89,00	23,00	64,00
Piombo	mg/kg s.s.	100,00	39,00	21,00	17,00	4,40	11,00	16,00	13,00	12,00	540,00	130,00	13,00	24,00
Rame	mg/kg s.s.	120,00	17,00	18,00	17,00	8,20	20,00	29,00	34,00	40,00	19,00	59,00	13,00	24,00
Vanadio	mg/kg s.s.	90,00	16,00	15,00	15,00	8,40	16,00	49,00	17,00	57,00	21,00	42,00	14,00	43,00
Zinco	mg/kg s.s.	150,00	92,00	49,00	27,00	20,00	46,00	66,00	50,00	57,00	1600,00	310,00	33,00	67,00
Amianto (ricerca quantitativa)	mg/kg s.s.	1000,00	< 1000	< 1000	< 1000	< 1000	< 1000	< 120	< 1000	< 120	< 1000	< 1000	< 1000	< 120
Idrocarburi C<=12	mg/kg s.s.	10,00	< 0,21	< 0,21	< 0,15	< 0,21	< 0,2	< 1	< 0,2	< 1	< 0,19	2,90	< 0,2	< 1
Idrocarburi C>12	mg/kg s.s.	50,00	< 1,9	4,90	< 2,3	2,80	< 1,9	9,00	11,00	32,00	7,00	1800,00	< 1,8	10,00
PCB totali	mg/kg s.s.	0,06	0,00	0,00	0,00	0,00	0,00	< 0,0003	< 0,000062	< 0,0003	0,00	< 0,0012	0,00	< 0,0003
Alaclor	mg/kg s.s.	0,01	< 0,00023	< 0,00021	< 0,00028	< 0,00011	< 0,00023	< 0,001	< 0,00025	< 0,001	< 0,00027	< 0,00097	< 0,0011	< 0,001
Aldrin	mg/kg s.s.	0,01	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,001	< 0,0005	< 0,001	< 0,00027	< 0,00097	< 0,0005	< 0,001
Atrazina	mg/kg s.s.	0,01	< 0,00023	< 0,00021	< 0,00028	< 0,00011	< 0,00023	< 0,001	< 0,00025	< 0,001	< 0,00027	< 0,00097	< 0,0011	< 0,001
alfa - esaclorocicloesano	mg/kg s.s.	0,01	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,001	< 0,0005	< 0,001	< 0,00027	< 0,00097	< 0,0005	< 0,001
beta - esaclorocicloesano	mg/kg s.s.	0,01	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,001	< 0,0005	< 0,001	< 0,00027	< 0,00097	< 0,0005	< 0,001
gamma - esaclorocicloesano (Lindano)	mg/kg s.s.	0,01	0,00	0,00	0,00	0,00	< 0,0005	< 0,001	< 0,0005	< 0,001	< 0,00027	< 0,00097	< 0,0005	< 0,001
Clordano (cis, trans)	mg/kg s.s.	0,01	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,001	< 0,0001	< 0,001	< 0,0001	< 0,0001	< 0,0001	< 0,001
DDD, DDT, DDE	mg/kg s.s.	0,01	0,00	< 0,0005	0,00	< 0,0005	0,00	0,00	< 0,0005	< 0,001	0,01	0,01	< 0,0005	< 0,001
Dieldrin	mg/kg s.s.	0,01	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,001	< 0,0005	< 0,001	< 0,00027	< 0,00097	< 0,0005	< 0,001
Endrin	mg/kg s.s.	0,01	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,00027	< 0,00097	< 0,001	< 0,001
Sommatoria PCDD, PCDF (conversione T.E.)	mg/kg s.s.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	< 0,000001	0,00	0,00	0,00	0,00	0,00
Benzo (a) antracene	mg/kg s.s.	0,50	0,01	0,05	0,01	0,01	0,00	< 0,01	0,00	< 0,01	0,02	0,21	0,04	0,02
Benzo (a) pirene	mg/kg s.s.	0,10	0,01	0,05	0,01	0,01	0,00	0,01	0,00	< 0,01	0,03	0,21	0,05	0,03
Benzo (b) fluorantene	mg/kg s.s.	0,50	0,01	0,03	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,14	0,04	0,03
Benzo (k) fluorantene	mg/kg s.s.	0,50	0,01	0,03	0,01	0,01	0,01	< 0,01	0,01	< 0,01	0,02	0,13	0,05	0,02
Benzo (g,h,i) perilene	mg/kg s.s.	0,10	0,01	0,02	0,01	0,01	0,01	0,01	0,01	< 0,01	0,02	0,14	0,06	0,04
Crisene	mg/kg s.s.	5,00	0,01	0,06	0,02	0,02	0,01	0,01	0,01	< 0,01	0,03	0,32	0,06	0,03
Dibenzo (a,e) pirene	mg/kg s.s.	0,10	0,00	0,00	0,00	0,00	0,00	< 0,01	0,00	< 0,01	0,00	0,04	0,01	0,01
Dibenzo (a,l) pirene	mg/kg s.s.	0,10	0,00	0,01	0,00	0,00	0,00	< 0,01	0,00	< 0,01	0,01	0,07	0,01	< 0,01
Dibenzo (a,i) pirene	mg/kg s.s.	0,10	0,00	0,01	0,00	0,00	0,00	< 0,01	0,00	< 0,01	0,01	0,08	0,01	< 0,01
Dibenzo (a,h) pirene	mg/kg s.s.	0,10	< 0,00023	0,00	< 0,00028	< 0,00011	< 0,00023	< 0,01	< 0,00025	< 0,01	< 0,0013	0,03	< 0,0011	< 0,01
Dibenzo (a,h) antracene	mg/kg s.s.	0,10	0,00	0,01	0,00	0,00	0,00	< 0,01	0,00	< 0,01	0,01	0,04	0,01	< 0,01
Indenopirene	mg/kg s.s.	0,10	0,01	0,02	0,01	0,01	0,00	< 0,01	0,00	< 0,01	0,02	0,14	0,05	0,03
Pirene	mg/kg s.s.	5,00	0,02	0,05	0,02	0,02	0,01	0,02	0,00	0,01	0,03	0,42	0,09	0,03
Sommatoria IPA	mg/kg s.s.	10,00	0,08	0,34	0,10	0,10	0,05	< 1	0,04	< 1	0,18	2,00	0,47	< 1

				ARPAT		ARPAT		ARPAT						
		Punto	S8	S8	S9	S9	S9	S9	S10	S10	S11	S11	S12	S12
		Profondità	1-3,6M	1-3,6M	0-1M	0-1M	1-3,2M	1-3,2M	0-1M	1-3,7M	0-1 M	1-4,0M	0-1M	1-3,5M
		Data	06/04/2022	06/04/2022	06/04/2022	06/04/2022	06/04/2022	06/04/2022	05/04/2022	05/04/2022	11/04/2022	11/04/2022	11/04/2022	11/04/2022
Parametro	u.m.	CSC (A)	00/01/2022	30/3 //2022	30,01,2022	00/01/2022	00/01/2022	00/01/2022	00/01/2022	00/01/2022	,,	,,	,,	,,
Arsenico	mg/kg s.s.	20,00	4,60		11,00	15,00	11,00	12,00	10,00	25,00	10,00	29,00	4,10	6,00
Berillio	mg/kg s.s.	2,00	0,29		0,53	0,90	0,45	0,70	0,39	0,46	0,51	0,97	0,41	0,62
Cadmio	mg/kg s.s.	2,00	0,08		0,25	0,40	< 0,098	< 0,2	< 0,11	2,30	0,24	0,33	0,34	0,42
Cobalto	mg/kg s.s.	20,00	6,40		8,20	13,00	6,40	7,50	8,50	9,40	10,00	18,00	7,90	9,10
Cromo totale	mg/kg s.s.	150,00	55,00		37,00	65,00	29,00	50,00	42,00	41,00	38,00	88,00	27,00	30,00
Cromo (VI)	mg/kg s.s.	2,00	0,26		0,48	1,40	0,40	0,30	0,23	0,37	0,40	0,46	0,18	0,25
Mercurio	mg/kg s.s.	1,00	0,06		0,45	0,40	0,10	0,20	0,09	0,10	1,60	0,58	0,28	0,26
Nichel	mg/kg s.s.	120,00	49,00		37,00	43,00	26,00	33,00	56,00	55,00	49,00	100,00	32,00	39,00
Piombo	mg/kg s.s.	100,00	16,00		89,00	84,00	19,00	24,00	14,00	49,00	84,00	96,00	39,00	73,00
Rame	mg/kg s.s.	120,00	14,00		54,00	60,00	18,00	19,00	15,00	20,00	48,00	54,00	25,00	510,00
Vanadio	mg/kg s.s.	90,00	14,00		25,00	38,00	22,00	37,00	20,00	24,00	22,00	48,00	17,00	19,00
Zinco	mg/kg s.s.	150,00	56,00		120,00	127,00	38,00	50,00	34,00	94,00	130,00	140,00	99,00	340,00
Amianto (ricerca quantitativa)	mg/kg s.s.	1000,00	< 1000	2391,00	< 1000	< 120	< 1000	< 120	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000
Idrocarburi C<=12	mg/kg s.s.	10,00	< 0,15		< 0,17	< 1	< 0,14	< 1	< 0,17	< 0,16	< 0,2	< 0,18	< 0,17	< 0,22
Idrocarburi C>12	mg/kg s.s.	50,00	7,30		8,30	25,00	14,00	130,00	< 2,1	5,20	39,00	52,00	9,60	27,00
PCB totali	mg/kg s.s.	0,06	0,00		< 0,000071	< 0,0003	0,01	< 0,0003	0,00	0,00	0,03	0,19	0,00	0,05
Alaclor	mg/kg s.s.	0,01	< 0,00086		< 0,00028	< 0,001	< 0,0023	< 0,001	< 0,0013	< 0,0023	< 0,00050	< 0,00100	< 0,00021	< 0,00053
Aldrin	mg/kg s.s.	0,01	< 0,0005		< 0,0005	< 0,001	< 0,0005	< 0,001	< 0,0005	< 0,0005	< 0,00050	< 0,00100	< 0,00021	< 0,00053
Atrazina	mg/kg s.s.	0,01	< 0,00086		< 0,00028	< 0,001	< 0,0023	< 0,001	< 0,0013	< 0,0023	< 0,00050	< 0,00100	< 0,00021	< 0,00053
alfa - esaclorocicloesano	mg/kg s.s.	0,01	< 0,0005		< 0,0005	< 0,001	< 0,0005	< 0,001	< 0,0005	< 0,0005	< 0,00050	< 0,00100	< 0,00021	< 0,00053
beta - esaclorocicloesano	mg/kg s.s.	0,01	< 0,0005		< 0,0005	< 0,001	< 0,0005	< 0,001	< 0,0005	< 0,0005	< 0,00050	< 0,00100	< 0,00021	< 0,00053
gamma - esaclorocicloesano (Lindano)	mg/kg s.s.	0,01	0,01		0,00	< 0,001	< 0,0005	< 0,001	< 0,0005	< 0,0005	< 0,00050	< 0,00100	< 0,00021	< 0,00053
Clordano (cis, trans)	mg/kg s.s.	0,01	< 0,0001		< 0,0001	< 0,001	< 0,0001	< 0,001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001
DDD, DDT, DDE	mg/kg s.s.	0,01	0,00		< 0,0005	0,01	0,00	0,01	< 0,0005	0,01	0,02	0,03	0,00	0,10
Dieldrin	mg/kg s.s.	0,01	< 0,0005		< 0,0005	< 0,001	< 0,0005	< 0,001	< 0,0005	< 0,0005	< 0,00050	0,00	< 0,00021	< 0,00053
Endrin	mg/kg s.s.	0,01	< 0,001		< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,00050	< 0,00100	< 0,00021	< 0,00053
Sommatoria PCDD, PCDF (conversione T.E.)	mg/kg s.s.	0,00	0,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Benzo (a) antracene	mg/kg s.s.	0,50	0,17		0,02	0,84	0,01	0,04	0,00	0,43	0,20	0,23	0,02	0,31
Benzo (a) pirene	mg/kg s.s.	0,10	0,16		0,04	1,00	0,03	0,05	0,00	0,46	0,36	0,39	0,02	0,40
Benzo (b) fluorantene	mg/kg s.s.	0,50	0,11		0,04	0,97	0,02	0,05	0,00	0,29	0,21	0,21	0,02	0,25
Benzo (k) fluorantene	mg/kg s.s.	0,50	0,11		0,03	0,48	0,02	0,02	0,01	0,28	0,18	0,20	0,02	0,23
Benzo (g,h,i) perilene	mg/kg s.s.	0,10	0,08		0,02	1,10	0,03	0,06	0,00	0,23	0,26	0,27	0,02	0,21
Crisene	mg/kg s.s.	5,00	0,26		0,04	0,89	0,03	0,07	0,01	0,50	0,22	0,28	0,03	0,34
Dibenzo (a,e) pirene	mg/kg s.s.	0,10	0,01		0,00	0,18	0,00	0,01	< 0,0013	0,03	0,04	0,05	0,00	0,05
Dibenzo (a,l) pirene	mg/kg s.s.	0,10	0,02		0,00	< 0,01	0,01	< 0,01	0,00	0,06	0,07	0,08	0,01	0,09
Dibenzo (a,i) pirene	mg/kg s.s.	0,10	0,02 < 0,00086		0,00	0,07	0,01	< 0,01 < 0,01	< 0,0013	0,06 < 0,0023	0,10 0,02	0,13 0,04	0,00	0,11 0,04
Dibenzo (a,h) pirene	mg/kg s.s.	0,10 0,10	0,00		< 0,00028 0,01	0,02 0,16	< 0,0023 0,01	0,01	< 0,0013 0,00	0,0023	0,02	0,04	< 0,0011 0,01	0,04
Dibenzo (a,h) antracene Indenopirene	mg/kg s.s.	0,10	0,02		0,01	0,16	0,01	0,01	0,00	0,08 0,19	0,06 0,23	0,08 0,24	0,01	0,09 0,22
	mg/kg s.s.	5,00	0,06		0,02	1,90	0,02	0,04	0,01	1,00	0,42	0,24	0,02	0,52
Pirene Sommatoria IPA	mg/kg s.s.							-	-	-	-			
Sommatoria IPA	mg/kg s.s.	10,00	1,30		0,26	5,50	0,21	< 1	0,05	3,60	2,40	2,70	0,21	2,90

										ARPAT		ARPAT		
		Punto	S13	S13	S14	S14	S15	S15	S16	S16	S16	S16	S17	S17
		Profondità	0-1M	1-4,0M	0-1M	1-3,7M	0-1M	1-4,0M	0-1M	0-1M	1-3,3M	1-3,3M	0-1M	1-3,5M
		Data	05/04/2022	05/04/2022	07/04/2022	07/04/2022	05/04/2022	05/04/2022	06/04/2022	06/04/2022	06/04/2022	06/04/2022	04/04/2022	04/04/2022
Parametro	u.m.	CSC (A)												
Arsenico	mg/kg s.s.	20,00	16,00	29,00	9,20	5,00	7,00	23,00	4,30	7,20	11,00	12,00	6,30	4,50
Berillio	mg/kg s.s.	2,00	0,43	0,67	0,63	0,40	0,36	0,68	0,23	0,50	0,53	1,00	0,34	0,61
Cadmio	mg/kg s.s.	2,00	< 0,087	0,32	< 0,13	0,40	0,30	< 0,12	< 0,13	< 0,2	0,11	0,20	< 0,16	< 0,14
Cobalto	mg/kg s.s.	20,00	7,00	12,00	12,00	7,10	19,00	12,00	6,50	6,60	10,00	12,00	5,10	20,00
Cromo totale	mg/kg s.s.	150,00	27,00	42,00	38,00	30,00	31,00	43,00	21,00	41,00	31,00	58,00	31,00	100,00
Cromo (VI)	mg/kg s.s.	2,00	0,36	0,42	0,31	0,14	0,24	0,27	0,23	1,00	0,19	< 0,2	0,29	0,23
Mercurio	mg/kg s.s.	1,00	0,11	0,23	0,91	0,07	0,24	0,11	0,16	0,10	0,13	0,10	0,23	0,09
Nichel	mg/kg s.s.	120,00	29,00	47,00	41,00	31,00	36,00	47,00	15,00	20,00	37,00	44,00	28,00	110,00
Piombo	mg/kg s.s.	100,00	20,00	52,00	29,00	21,00	54,00	23,00	36,00	49,00	30,00	34,00	42,00	18,00
Rame	mg/kg s.s.	120,00	36,00	140,00	28,00	34,00	35,00	31,00	30,00	24,00	36,00	37,00	34,00	52,00
Vanadio	mg/kg s.s.	90,00	23,00	34,00	27,00	17,00	29,00	32,00	14,00	28,00	23,00	46,00	19,00	27,00
Zinco	mg/kg s.s.	150,00	65,00	180,00	68,00	65,00	85,00	62,00	39,00	45,00	80,00	73,00	45,00	74,00
Amianto (ricerca quantitativa)	mg/kg s.s.	1000,00	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 1000	< 120	< 1000	< 120	< 1000	< 1000
Idrocarburi C<=12	mg/kg s.s.	10,00	< 0,19	< 0,2	< 0,19	< 0,15	< 0,16	< 0,18	< 0,18	< 1	< 0,19	< 1	< 0,19	< 0,18
Idrocarburi C>12	mg/kg s.s.	50,00	< 1,7	11,00	< 2,6	6,80	7,20	4,30	< 2,6	24,00	6,60	31,00	< 3,4	< 3
PCB totali	mg/kg s.s.	0,06	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,01	0,00	0,08	0,00	0,00
Alaclor	mg/kg s.s.	0,01	< 0,001	< 0,003	< 0,0003	< 0,0011	< 0,0048	< 0,0028	< 0,003	< 0,001	< 0,0012	< 0,001	< 0,00031	< 0,000067
Aldrin	mg/kg s.s.	0,01	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,001	< 0,0005	< 0,001	< 0,0005	< 0,0005
Atrazina	mg/kg s.s.	0,01	< 0,001	< 0,003	< 0,0003	< 0,0011	< 0,0048	< 0,0028	< 0,003	< 0,001	< 0,0012	< 0,001	< 0,00031	< 0,000067
alfa - esaclorocicloesano	mg/kg s.s.	0,01	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,001	< 0,0005	< 0,001	< 0,0005	< 0,0005
beta - esaclorocicloesano	mg/kg s.s.	0,01	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,001	< 0,0005	< 0,001	< 0,0005	< 0,0005
gamma - esaclorocicloesano (Lindano)	mg/kg s.s.	0,01	< 0,0005	< 0,0005	< 0,0005	0,00	0,01	0,00	< 0,0005	< 0,001	0,00	< 0,001	< 0,0005	< 0,0005
Clordano (cis, trans)	mg/kg s.s.	0,01	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,0001	< 0,001	< 0,0001	< 0,001	< 0,0001	< 0,0001
DDD, DDT, DDE	mg/kg s.s.	0,01	0,00	0,00	0,00	0,01	< 0,0005	0,01	0,00	0,02	0,01	0,02	0,00	< 0,0005
Dieldrin	mg/kg s.s.	0,01	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,001	< 0,0005	< 0,001	< 0,0005	< 0,0005
Endrin	mg/kg s.s.	0,01	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Sommatoria PCDD, PCDF (conversione T.E.)	mg/kg s.s.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Benzo (a) antracene	mg/kg s.s.	0,50	0,01	0,01	0,01	0,03	0,08	0,28	0,01	0,06	0,03	0,10	0,02	0,00
Benzo (a) pirene	mg/kg s.s.	0,10	0,01	0,02	0,00	0,03	0,12	0,39	0,02	0,05	0,04	0,12	0,03	0,00
Benzo (b) fluorantene	mg/kg s.s.	0,50	0,01	0,01	0,01	0,02	0,05	0,26	0,01	0,05	0,02	0,14	0,01	0,00
Benzo (k) fluorantene	mg/kg s.s.	0,50	0,02	0,01	0,01	0,02	0,08	0,27	0,01	0,02	0,02	0,06	0,02	0,00
Benzo (g,h,i) perilene	mg/kg s.s.	0,10	0,02	0,01	0,00	0,02	0,08	0,34	0,02	0,03	0,03	0,13	0,02	0,00
Crisene	mg/kg s.s.	5,00	0,02	0,02	0,01	0,04	0,14	0,37	0,03	0,06	0,05	0,13	0,04	0,00
Dibenzo (a,e) pirene	mg/kg s.s.	0,10	0,00	< 0,003	0,00	0,00	0,01	0,04	0,00	< 0,01	0,00	0,03	0,00	0,00
Dibenzo (a,l) pirene	mg/kg s.s.	0,10	0,00	0,00	0,00	0,00	0,02	0,05	0,01	< 0,01	0,01	< 0,01	0,01	< 0,00034
Dibenzo (a,i) pirene	mg/kg s.s.	0,10	0,00	< 0,003	0,00	0,01	0,02	0,06	0,01	< 0,01	0,01	0,02	0,00	< 0,00034
Dibenzo (a,h) pirene	mg/kg s.s.	0,10	< 0,001	< 0,003	< 0,0003	0,00	< 0,0048	< 0,0028	< 0,003	< 0,01	< 0,0012	0,02	0,01	0,00
Dibenzo (a,h) antracene	mg/kg s.s.	0,10	0,00	0,00	0,00	0,01	0,02	0,08	0,01	< 0,01	0,01	0,03	0,01	0,00
Indenopirene	mg/kg s.s.	0,10	0,01	0,01	0,01	0,02	0,06	0,30	0,01	0,03	0,02	0,09	0,02	0,00
Pirene	mg/kg s.s.	5,00	0,03	0,02	0,01	0,05	0,16	0,62	0,03	0,10	0,05	0,17	0,04	0,00
Sommatoria IPA	mg/kg s.s.	10,00	0,15	0,11	0,06	0,24	0,84	3,10	0,16	< 1	0,29	< 1	0,24	0,02

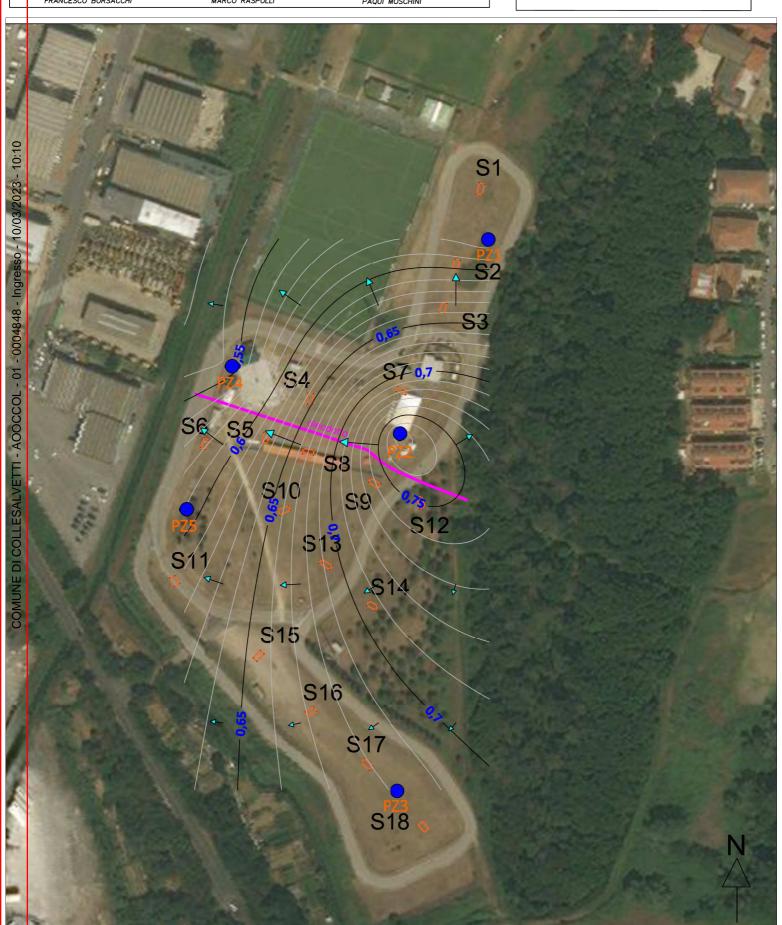
Purt Side Side Science Sci							ARPAT		ARPAT		ARPAT		ARPAT		ARPAT
Particular Par						Campione 1	Campione 1	Campione 2	Campione 2	Campione 3	Campione 3	Campione 4	Campione 4	Campione 1	Campione 1 -
Parlmetro			Punto	S18	S18										Scavo -
Parametro Data 0404/0502 0404/0502 03.05.201 03.05.201 03.05.202 03.05.20			D (P)	0.414	4.4.014										Parete 1
Parametro					,										
Assertico	Barranatus			04/04/2022	04/04/2022	03.05.2021	03.05.2021	03.05.2021	03.05.2021	03.05.2021	03.05.2021	03.05.2021	03.05.2021	10.06.2021	10.06.2021
Bertlin				0.00	7.00	0.00		0.00		0.00		7.00		44.70	
Cadmin			·			·									
Cobat Coba				·											
Common C															
Como (VI)															
Mercurio						53,00		69,00		62,00		109,00		52,00	
Niche mg/kg s.s. 120.00 45.00 56.00 45.00 45.00 57.00 151.00 43.00 14.0				· ·		0.10		0.10		0.10		0.11		0.10	
Plombo						·									
Fame					,	· · · · · · · · · · · · · · · · · · ·									
Variation Mg/kg s.s. 90,00 23,00 22,00 33,10 37,90 37,90 30,10 36,50					•	-		-						_	
Zinco					·	·			-		-				
Amianto (ricerca quantitativa)			,		·	·				·		·		ŕ	
Idrocarburi Cest 2					· ·	564,00		770,00		233,00		203,00		2010,00	
Refrocarburi C>12 mg/kg s.s. 50,00 <3 18,00 58,00 34,00 18,40 24,00 76,00 58,00 49,00 30,00 97,00 48,60 48,60 49,00 30,00 97,00 48,60	, ,		-												
PCB totali						50.00	04.00	10.40	04.00	70.00	50.00	40.00	00.00	07.00	40.00
Alacior					,	•			,	-		·		•	
Aldrin mg/kg s.s. 0,01 < 0,0005			· ·			<0,005	0,02	0,01	0,01	0,02	0,10	0,02	0,05	0,02	0,05
Atrazina mg/kg s.s. 0,01 < 0,00067 < 0,00028															
alfa - esaclorocicloesano mg/kg s.s. 0,01 < 0,0005															
beta - esaclorocicloesano mg/kg s.s. 0,01 < 0,0005			·												
Samma - esaclorocicloesano (Lindano) mg/kg s.s. 0,01 < 0,0005 < 0,0005 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005 < 0,0005			· ·												
Clordano (cis, trans) mg/kg s.s. 0,01 < 0,0001															
DDD, DDT, DDE	` ,				-										
Dietdrin					-										
Endrin mg/kg s.s. 0,01 < 0,001			· ·												
Sommatoria PCDD, PCDF (conversione T.E.) mg/kg s.s. 0,00 0															
Benzo (a) antracene mg/kg s.s. 0,50 0,19 0,08 0,38 0,38 0,02 0,04 0,08 0,17 0,70 0,40 0,27 0,2 Benzo (a) pirene mg/kg s.s. 0,10 0,21 0,10 0,38 0,42 0,02 0,04 0,07 0,16 0,74 0,52 0,27 0,3 Benzo (b) fluorantene mg/kg s.s. 0,50 0,13 0,06 0,48 0,39 <0,050					-										
Benzo (a) pirene mg/kg s.s. 0,10 0,21 0,10 0,38 0,42 0,02 0,04 0,07 0,16 0,74 0,52 0,27 0,3 Benzo (b) fluorantene mg/kg s.s. 0,50 0,13 0,06 0,48 0,39 <0,050 0,05 0,10 0,17 0,88 0,47 0,34 0,2 Benzo (k) fluorantene mg/kg s.s. 0,50 0,18 0,06 0,23 0,22 <0,050 0,09 0,42 0,26 0,17 0,2 Benzo (g,h,i) perilene mg/kg s.s. 0,10 0,15 0,05 0,37 0,43 0,02 0,04 0,06 0,13 0,79 0,62 0,24 0,3 Crisene mg/kg s.s. 5,00 0,32 0,12 0,38 0,46 <0,10 0,05 <0,10 0,05 <0,24 0,3 Dibenzo (a,e) pirene mg/kg s.s. 0,10 0,03 0,01 0,16 0,08 <0,010 0,01 <0,010 <0,010 <					-	0.20	0.20	0.02	0.04	0.00	0.17	0.70	0.40	0.27	0.24
Benzo (b) fluorantene mg/kg s.s. 0,50 0,13 0,06 0,48 0,39 <0,050												-			
Benzo (k) fluorantene mg/kg s.s. 0,50 0,18 0,06 0,23 0,22 <0,050				-		-					-	-	-	-	
Benzo (g,h,i) perilene mg/kg s.s. 0,10 0,15 0,05 0,37 0,43 0,02 0,04 0,06 0,13 0,79 0,62 0,24 0,3 Crisene mg/kg s.s. 5,00 0,32 0,12 0,38 0,46 <0,10 0,05 <0,10 0,20 0,62 0,48 0,25 0,2 Dibenzo (a,e) pirene mg/kg s.s. 0,10 0,03 0,01 0,16 0,08 <0,010 0,02 0,03 0,03 0,30 0,11 0,13 0,0 Dibenzo (a,l) pirene mg/kg s.s. 0,10 0,03 0,01 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010											-				
Crisene mg/kg s.s. 5,00 0,32 0,12 0,38 0,46 <0,10													·		
Dibenzo (a,e) pirene mg/kg s.s. 0,10 0,03 0,01 0,16 0,08 <0,010				-	-	-				·		-	-		0,29
Dibenzo (a,l) pirene mg/kg s.s. 0,10 0,05 0,02 <0,010															0,29
Dibenzo (a,i) pirene mg/kg s.s. 0,10 0,03 0,02 0,09 0,04 <0,010						-					-				< 0,00
						·			· ·						0,05
Dibenzo (a.h) pirene mg/kg.s.s. 0.10 0.06 0.04 <0.010 <0.011 <0.010 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.01	Dibenzo (a,h) pirene	mg/kg s.s.	0,10	0,06	0,02	<0,010	< 0,04	<0,010	< 0,01	<0,010	< 0,02	0,02	< 0,00	<0,010	0,03
					-				· ·					· ·	0,08
						-		· ·							0,25
	-		·	-		-			.						0,39
															1,90

		1	T	ADDAT	1	ADDAT	1	ADDAT
			0 : 0	ARPAT	0 : 0	ARPAT	0 : 4	ARPAT
		Punto	Campione 2 Scavo -	Scavo -	Campione 3 Scavo -	Campione 3 Scavo -	Campione 4 Scavo -	Campione 4 - Scavo -
		Funto	Parete 2	Parete 2	Parete 3	Parete 3	Parete 4	Parete 4
		Profondità	1-3,5	1-3,5	1-3,5	1-3,5	1-3,5	1-3,5
		Data	10.06.2021	10.06.2021	10.06.2021	10.06.2021	10.06.2021	10.06.2021
Parametro	u.m.	CSC (A)						
Arsenico	mg/kg s.s.	20,00	8,10		8,60		11,00	
Berillio	mg/kg s.s.	2,00	0,73		1,01		0,97	
Cadmio	mg/kg s.s.	2,00	0,92		1,03		1,67	
Cobalto	mg/kg s.s.	20,00	9,60		10,40		13,80	
Cromo totale	mg/kg s.s.	150,00	60,00		56,00		63,00	
Cromo (VI)	mg/kg s.s.	2,00	,					
Mercurio	mg/kg s.s.	1,00	<0,10		<0,10		<0,10	
Nichel	mg/kg s.s.	120,00	49,00		53,00		57,00	
Piombo	mg/kg s.s.	100,00	140,00		220,00		183,00	
Rame	mg/kg s.s.	120,00	45,00		220,00		65,00	
Vanadio	mg/kg s.s.	90,00	32,80		30,80		42,10	
Zinco	mg/kg s.s.	150,00	289,00		527,00		388,00	
Amianto (ricerca quantitativa)	mg/kg s.s.	1000,00	,		,		,	
Idrocarburi C<=12	mg/kg s.s.	10,00						
Idrocarburi C>12	mg/kg s.s.	50,00	2160,00	1600,00	128,00	110,00	81,00	41,00
PCB totali	mg/kg s.s.	0,06		0,07	0,04	0,20	0,03	0,10
Alaclor	mg/kg s.s.	0,01						
Aldrin	mg/kg s.s.	0,01						
Atrazina	mg/kg s.s.	0,01						
alfa - esaclorocicloesano	mg/kg s.s.	0,01						
beta - esaclorocicloesano	mg/kg s.s.	0,01						
gamma - esaclorocicloesano (Lindano)	mg/kg s.s.	0,01						
Clordano (cis, trans)	mg/kg s.s.	0,01						
DDD, DDT, DDE	mg/kg s.s.	0,01						
Dieldrin	mg/kg s.s.	0,01						
Endrin	mg/kg s.s.	0,01						
Sommatoria PCDD, PCDF (conversione T.E.)	mg/kg s.s.	0,00						
Benzo (a) antracene	mg/kg s.s.	0,50	0,21	0,10	0,24	0,24	0,58	0,27
Benzo (a) pirene	mg/kg s.s.	0,10	0,15	0,08	0,24	0,26	0,44	0,32
Benzo (b) fluorantene	mg/kg s.s.	0,50	0,20	0,11	0,31	0,28	0,59	0,31
Benzo (k) fluorantene	mg/kg s.s.	0,50	0,11	0,06	0,16	0,20	0,30	0,16
Benzo (g,h,i) perilene	mg/kg s.s.	0,10	0,09	0,09	0,21	0,32	0,35	0,33
Crisene	mg/kg s.s.	5,00	0,19	0,15	0,24	0,31	0,56	0,33
Dibenzo (a,e) pirene	mg/kg s.s.	0,10	0,07	0,04	0,10	0,08	0,18	0,08
Dibenzo (a,l) pirene	mg/kg s.s.	0,10	<0,010	< 0,01	<0,010	< 0,01	<0,010	< 0,01
Dibenzo (a,i) pirene	mg/kg s.s.	0,10	0,07	0,03	0,12	0,03	0,28	< 0,01
Dibenzo (a,h) pirene	mg/kg s.s.	0,10	<0,010	0,02	<0,010	< 0,01	<0,010	< 0,01
Dibenzo (a,h) antracene	mg/kg s.s.	0,10	0,03	0,03	0,05	0,08	0,12	0,07
Indenopirene	mg/kg s.s.	0,10	0,09	0,08	0,16	0,22	0,28	0,25
Pirene	mg/kg s.s.	5,00	0,25	0,14	0,37	0,38	0,77	0,33
Sommatoria IPA	mg/kg s.s.	10,00	1,40	< 1,0	2,20	1,70	4,50	1,80

Analisi di Rischio sanitaria e ambientale Pista Ciclabile Ivo Mancini Via Berlinguer, Loc. Stagno SITO LI 1148

Allegato 3 - Risultati indagini - acque di falda -

Risultati Acque sotterranee Descrizione Data campione INQUINANTI INORGANICI CIANURI LIBERI FLUORURI METALLI ALLUMINIO ANTIMONIO ARGENTO ARSENICO BERILLO BORO CADMIO COBALTO CROMO TOTALE CROMO ESAVALENTE	µg/I µg/I µg/I µg/I µg/I	50 1500	PZ1 30.03.2022 <10 369	PZ1 24.11.2022	PZ1 24.11.2022	PZ2 30.03.2022	PZ2 30.03.2022	PZ2 24.11.2022	PZ2 24.11.2022	PZ3 30.03.2022	PZ3 24.11.2022	PZ3 24.11.2022	PZ4 30.03.2022	PZ4 30.03.2022	PZ4 24.11.2022	PZ5 30.03.2022	PZ5 30.03.2022	PZ5 24.11.202
INQUINANTI INORGANICI CIANURI LIBERI FLUORURI METALLI ALLUMINIO ANTIMONIO ARGENTO ARSENICO BERILLO BORO CADMIO COBALTO CROMO TOTALE	μg/l μg/l μg/l μg/l μg/l	1500	<10		24.11.2022	30.03.2022	30.03.2022	24.11.2022	24.11.2022	30.03.2022	24.11.2022	24.11.2022	30.03.2022	30.03.2022	24.11.2022	30.03.2022	30.03.2022	24 11 202
CIANURI LIBERI FLUORURI METALLI ALLUMINIO ANTIMONIO ARGENTO ARSENICO BERILLO BORO CADMIO COBALTO CROMO TOTALE	μg/l μg/l μg/l μg/l μg/l	1500																
CIANURI LIBERI FLUORURI METALLI ALLUMINIO ANTIMONIO ARGENTO ARSENICO BERILLO BORO CADMIO COBALTO CROMO TOTALE	μg/l μg/l μg/l μg/l μg/l	1500																
FLUORURI METALLI ALLUMINIO ANTIMONIO ARGENTO ARSENICO BERILLO BORO CADMIO COBALTO CROMO TOTALE	μg/l μg/l μg/l μg/l μg/l	1500												_			_	
METALLI ALLUMINIO ANTIMONIO ARGENTO ARSENICO BERILLO BORO CADMIO COBALTO CROMO TOTALE	μg/l μg/l μg/l		369	000	0.00	<10	18	475	0.00	<10	1700	1.0	<10	< 5	050	<10	< 5	
ALLUMINIO ANTIMONIO ARGENTO ARSENICO BERILLO BORO CADMIO COBALTO CROMO TOTALE	μg/l μg/l	200		383	0,39	411	< 500	475	0,39	2370	1780	1,9	234	< 500	352	523	520	550
ALLUMINIO ANTIMONIO ARGENTO ARSENICO BERILLO BORO CADMIO COBALTO CROMO TOTALE	μg/l μg/l	200																
ANTIMONIO ARGENTO ARSENICO BERILLO BORO CADMIO COBALTO CROMO TOTALE	μg/l μg/l						< 25							< 25			< 25	
ARGENTO ARSENICO BERILLO BORO CADMIO COBALTO CROMO TOTALE	μg/l	5					< 0.2							0,2			0,3	
BERILLO BORO CADMIO COBALTO CROMO TOTALE		10					< 1							< 1			< 1	
BORO CADMIO COBALTO CROMO TOTALE		10	4,13			3,02	3,6			1,03			8,5	10		1,69	6,1	
CADMIO COBALTO CROMO TOTALE	μg/l	4	<0.40			<0.40	< 0.05			<0.40			<0.40	< 0.05		<0.40	0,09	
COBALTO CROMO TOTALE	μg/l	1000		650	609			1250	1012		1220	1282		2570	2740			1750
CROMO TOTALE	μg/l	5	<0.50			<0.50	< 0.05			<0.50			<0.50	< 0.05		<0.50	< 0.05	
	μg/l	50	<5.0			<5.0	2			<5.0			<5.0	< 1		<5.0	< 1	
CROMO ESAVALENTE	μg/l	50	<5.0			<5.0	1			<5.0			<5.0	1,7		<5.0	< 1	
	μg/l	5	<0.50			<0.50	< 0.2			<0.50			<0.50	< 0.2		<0.50	< 0.2	
FERRO	μg/l	200	1170	3840	3183	550	897	53	62	140	34,6	116	124	244	37,6	149	114	25,8
MANGANESE	μg/l	50	1790	2490	3425	1180	978	1300	276	610	226	886	1420	1185	700	1240	871	1110
MERCURIO	μg/l	1	<0.10	2.50	J3	<0.10	< 0.1	1000	273	<0.10		000	<0.10	0,6	700	<0.10	< 0.1	1110
NICHEL	μg/l	20	15,8			2.48	4,9			<0.10			0.10	2,7		<0.10	3,8	
PIOMBO	μg/I μg/I	10	<1.0		23	<1.0	4,9 < 1			<1.0			<1.0	< 1		<1.0	< 1	
RAME		1000	<1.0 <5.0		23	<1.0 <5.0	<1			<1.0 <5.0			<1.0 <5.0	<1		<1.0 <5.0	<1	4
SELENIO	μg/l	1000	<3.0			۲۵.0	0.5			۷۵.0			₹3.0	0.6		<٥.0		
	μg/l						< 0.05							< 0.05			0,9 < 0.05	
TALLIO VANADIO	μg/l μg/l	2 50	<20			<20	< 0.05			<20			<20	< 0.05		<20	< 0.05	
ZINCO	μg/I μg/I	3000	<20			<20	< 1			<20			<20	14		<20	14	
ZINOO	μу/і	3000					7 1							14			14	
Idrocarburi C<10	μg/l			<23				<23			<23				<23			<23
Idrocarburi C<10 come n-esano	μg/l			<25				<25			<25				<25			<25
Idrocarburi C10-C40	μg/l			37				<28			60				<28			<28
Idrocarburi C10-C40 come n-esano	μg/l			41				<31			66				<31			<31
IDROCARBURI TOTALI	μg/l	350	<31	41	<50	1100	200	<31	<50	<31	66	<50	<31	< 50	<31	<31	< 50	<31
IDROCARBURI AROMATICI																		
BENZENE	μg/l	1	0,0145			0,53	0,6			<0.010			<0.010	<0.1		0,0118	< 0.1	
TOLUENE	μg/l	15	< 0.050			0,069	< 0.1			< 0.050			<0.050	<0.1		< 0.050	< 0.1	
ETILBENZENE	μg/l	50	<0.010			<0.010	< 0.1			<0.010			<0.010	<0.1		<0.010	< 0.1	
p-XILENE	μg/l	10	<0.020			0,53	0,6			<0.020			0,0207	<0.1		<0.020	< 0.1	
STIRENE	μg/l	25	<0.010			<0.010	< 0.1			<0.010			<0.010	<0.1		<0.010	< 0.1	
IDROCARBURI POLICICLICI AROMATICI																		
BENZO(a)ANTRACENE	μg/l	0,1	0,00106			0,0242	< 0.001			<0.00056			<0.00056	< 0.001		<0.00056	< 0.001	
BENZO(a)PIRENE	μg/l	0,01	0,00066			0,00251	< 0.001			0,00035			<0.00014	< 0.001		0,00045	< 0.001	
BENZO(b)FLUORANTENE	μg/l	0,1	0,0007			<0.00056	< 0.001			0,00076			<0.00056	< 0.001		<0.00056	< 0.001	
BENZO(k)FLUORANTENE	μg/l	0,05	<0.00056			<0.00056	< 0.001			<0.00056			<0.00056	< 0.001		<0.00056	< 0.001	
BENZO(g,h,i)PERILENE	μg/l	0,01	0,000293			0,00117	< 0.001			<0.00014			<0.00014	< 0.001		<0.00014	< 0.001	
CRISENE	μg/l	5	0,00145			0,048	< 0.001			<0.00014			<0.00056	< 0.001		<0.00014	< 0.001	
DIBENZO(a,h)ANTRACENE	μg/l	0,01	<0.00056			<0.00056	< 0.001			<0.00056			<0.00056	< 0.001		<0.00056	< 0.001	
INDENO(1,2,3-cd)PIRENE	μg/l	0,01	<0.00056			0,00166	< 0.001			<0.00056			<0.00056	< 0.001		<0.00056	< 0.001	
PIRENE	μg/I μg/I	50	0,0047			0,00166	0,003			0,00131			<0.00056	< 0.001		0,0025	0,002	<u> </u>
THENE	μу/і	- 30	0,0047			0,0303	0,003			0,00131			<0.00030	< 0.001		0,0023	0,002	
FITOFARMACI	+ +																	
ALACLOR	μg/l	0,1					< 0.01							<0.01			< 0.01	
ALDRIN	μg/l	0,03	<0.00056			<0.00056	< 0.003			<0.00056			<0.00056	< 0.1		<0.00056	< 0.003	
ATRAZINA	μg/l	0,3	<0.00056			<0.00056	< 0.03			<0.00056			<0.00056	< 0.1		<0.00056	< 0.03	
ALFA-ESACLOROESANO	μg/l	0,1	<0.00056			<0.00056	< 0.01			<0.00056			<0.00056	< 0.01		<0.00056	< 0.01	
BETA-ESACLOROESANO	μg/l	0,1	<0.00056			<0.00056	< 0.01			<0.00056			<0.00056	< 0.01		<0.00056	< 0.01	
GAMMA-ESACLOROESANO	μg/l	0,1					< 0.01							< 0.01			< 0.01	
CLORDANO	μg/l	0,1	<0.00056			<0.00056	< 0.01			<0.00056			<0.00056	< 0.1		<0.00056	< 0.01	
DDD, DDT, DDE	μg/l	0,1	<0.00056			0,055	< 0.01			<0.00056			<0.00056	< 0.1		<0.00056	< 0.01	
DIELDRIN	μg/l	0,03	<0.00056			<0.00056	< 0.003			<0.00056			<0.00056	< 0.1		<0.00056	< 0.003	
ENDRIN	μg/l	0,03	<0.00056			<0.00056	< 0.003			<0.00056			<0.00056	< 0.11		<0.00056	< 0.003	
SOMM. FITOFARMACI	μg/I μg/I	0,1	<0.00056			0,055	< 0.01			<0.00056			<0.00056	< 0.01		<0.00056	< 0.01	
GOIVIIVI. I II OI ARIVIAOI	μg/I	0,5	\U.UUU30			0,000	₹ 0.05			\U.UUU30			\U.UUU30	₹ 0.05		\0.00000	V 0.05	
DIOSSINE E FURANI																		
	μg/l	4,0E-06					2,0E-07							2,0E-07			2,0E-07	
SOMMATORIA PCDD, PCDF ALTRE SOSTANZE			I	1		l									l	l		4


Analisi di Rischio sanitaria e ambientale Pista Ciclabile Ivo Mancini Via Berlinguer, Loc. Stagno SITO LI 1148

Allegato 4 – Freatimetria marzo 2022

Analisi di Rischio sanitaria e ambientale Pista Ciclabile Ivo Mancini Via Berlinguer, Loc. Stagno SITO LI 1148

Allegato 5 - Risultati indagini - test di cessione

Risultati test di cessione

							ARPAT			ARPAT		ARPAT					ARPAT
		Punto	S1	S2	S2	S3	S3	S7	S9	S9	S9	S9	S11	S12	S15	S16	S16
		Profondità	0-1	0-1	1-4.4	1-4.4	1-4.4	1-3.7	0-1	0-1	1-3.2	1-3.2	0-1	1-3.5	0-1	0-1	0-1
		Data	4/8/2022	4/8/2022	4/8/2022	4/8/2022	4/8/2022	11/04/22	06/04/22	06/04/22	06/04/22	06/04/22	11/04/22	11/04/22	05/04/22	06/04/22	06/04/22
PARAMETRO	u.m.																
Conducibilità	μS/cm		197	192	361	441		309	101		224		629	426	188	184	
Nitrati	mg/l	50	0.46	0.6	0.52	< 0,1		0.72	0.66		0.28		0.11	< 0,1	0.37	0.26	
Fluoruri	mg/l	1.5	0.67	0.48	0.56	0.54		0.83	0.65		1.2		0.51	0.77	0.55	0.67	
Solfati	mg/l	250	4.5	4.6	54	67		40	6.3		16		130	52	25	45	
Cloruri	mg/l	100	0.78	0.66	2.5	4		0.68	0.61		4.8		14	12	2.7	3.1	
Cianuri	μg/l	50	< 10	< 10	< 10	< 10		< 10	< 10		< 10		< 10	< 10	< 10	< 10	
Antimonio	μg/l						1,9			1,6		0,5					1,4
Arsenico	μg/l	50	1.2	2.1	2	3.4	< 1	< 1,0	5.1	4,8	< 1,0	< 1	2.1	20	5.3	1.9	1,9
Bario	mg/l	1	< 0,050	< 0,050	< 0,050	< 0,050	0.048	0.14	0.093	0.037	< 0,050	0.040	0.12	0.17	0.054	< 0,050	0.024
Berillio	μg/l	10	< 0,40	< 0,40	< 0,40	< 0,40		< 0,40	< 0,40		< 0,40		< 0,40	1.1	< 0,40	< 0,40	
Cadmio	μg/l	5	< 0,50	< 0,50	< 0,50	< 0,50	< 0,05	< 0,50	< 0,50	< 0,05	< 0,50	< 0,05	< 0,50	< 0,50	< 0,50	< 0,50	< 0,05
Cobalto	μg/l	250	< 5,0	< 5,0	< 5,0	< 5,0		< 5,0	< 5,0		< 5,0		< 5,0	< 5,0	< 5,0	< 5,0	
Cromo totale	μg/l	50	17	15	14	14	1,1	13	18	5	< 5,0	2,6	12	52	12	< 5,0	1,9
Mercurio	μg/l	1	< 0,10	< 0,10	< 0,10	< 0,10	< 0,1	< 0,10	< 0,10	< 0,1	< 0,10	< 0,1	< 0,10	0.28	< 0,10	< 0,10	< 0,1
Molibdeno	μg/l						11			7,7		18					6,9
Nichel	μg/l	10	9.7	7.5	8	12	3	6.1	9.9	2,1	< 2,0	1	10	27	6.9	2.6	< 1
Piombo	μg/l	50	1.8	2.5	1.3	< 1,0	< 1	< 1,0	13	3,2	< 1,0	< 1	1.1	67	8.7	3.2	1,3
Rame	mg/l	0.05	0.0053	< 0,0050	< 0,0050	< 0,0050	<0.0015	< 0,0050	0.014	0.0059	< 0,0050	0.001	< 0,0050	0.56	0.013	< 0,0050	0.004
Selenio	μg/l	10	< 1,0	< 1,0	< 1,0	< 1,0	0,4	< 1,0	< 1,0	0,7	< 1,0	2,3	< 1,0	2.8	< 1,0	1.1	0,6
Vanadio	μg/l	250	< 5,0	6.7	< 5,0	5.6		< 5,0	18		< 5,0		< 5,0	77	32	6.9	
Zinco	mg/l	3	< 0,020	< 0,020	< 0,020	< 0,020	<0.001	< 0,020	0.031	0.0062	< 0,020	<0.001	< 0,020	0.27	0.022	< 0,020	0.0014
Amianto	mg/l	30	< 10	< 10	< 10	< 10		< 10	< 10		< 10		< 10	< 10	< 10	< 10	
COD	mg/l	30	16	10	18	27		9.4	8.5		8.4		26	37	19	13	
рН	μрН	12	7.71	7.99	7.67	8.09		7.54	8.14		7.61		7.41	8.87	8.1	8.03	

Analisi di Rischio sanitaria e ambientale Pista Ciclabile Ivo Mancini Via Berlinguer, Loc. Stagno SITO LI 1148

Allegato 6 – foc LCL

	A B C D E		F	G H I J K	L
1	UCL Sta	atistic	s for Unce	nsored Full Data Sets	
2					
3	User Selected Options				
4	Date/Time of Computation ProUCL 5.121/02/20	023 12	2:14:15	foc - LCL SUOLO SUPERFICIA	ALE
5	From File WorkSheet.xls				
6	Full Precision OFF Confidence Coefficient 95%				
7	Confidence Coefficient 95% Number of Bootstrap Operations 2000				
8	Number of Bootstrap Operations 2000				
9					
11	C0				
12					
13			General S	tatistics	
14	Total Number of Observation	ons	18,00	Number of Distinct Observations	13,00
15				Number of Missing Observations	0
165	Minim	um	-0,0170	Mean	-0,0115
12:	Maxim	um -	-0,00460	Median	-0,0120
185		SD	0,00365	Std. Error of Mean	8,6073E-4
165	Coefficient of Variat	ion	-0,319	Skewness	0,271
200					
2₽			Normal G		
220	Shapiro Wilk Test Statis		0,957	Shapiro Wilk GOF Test	
2 3 9	5% Shapiro Wilk Critical Va		0,897	Data appear Normal at 5% Significance Level	
24⊑	Lilliefors Test Statis		0,146	Lilliefors GOF Test	
250	5% Lilliefors Critical Va		0,202	Data appear Normal at 5% Significance Level 5% Significance Level	
26	Бата ар	реаі і	ivoillai at c	7 / Significance Level	
20		Assur	mina Norm	al Distribution	
გ ექ	95% Normal UCL		9	95% UCLs (Adjusted for Skewness)	
365	95% Student's-t U	CL -	-0,00996	95% Adjusted-CLT UCL (Chen-1995)	-0,00998
3 0				95% Modified-t UCL (Johnson-1978)	-0,00995
3 2 <	C	amm	na Statistics	s Not Available	
3 E	Lo	gnorn	nal Statisti	cs Not Available	
3€					
385	·			on Free UCL Statistics	
3 8	Data appear to follow	a Dis	scernible D	istribution at 5% Significance Level	
3 <u>0</u>	Non		antoin Dinto	thutten Free HOLe	
38	95% CLT U		-0,0100	ibution Free UCLs 95% Jackknife UCL	-0,00996
32	95% Standard Bootstrap U		-0,0100	95% Bootstrap-t UCL	-0,00990
(本) Man	95% Hall's Bootstrap U		-0,00997	95% Percentile Bootstrap UCL	-0,0100
4ප 42	95% BCA Bootstrap U		-0,0101	55%. 5.55man Booksap 662	-,5.55
43	90% Chebyshev(Mean, Sd) U		-0,00887	95% Chebyshev(Mean, Sd) UCL	-0,00770
44	97,5% Chebyshev(Mean, Sd) U		-0,00608	99% Chebyshev(Mean, Sd) UCL	-0,00289
45				-	
46		Sι	uggested U	CL to Use	
47	95% Student's-t U	CL -	-0,00996		
48					
49				vided to help the user to select the most appropriate 95%	UCL.
50				size, data distribution, and skewness.	
51				lation studies summarized in Singh, Maichle, and Lee (20	-
52	However, simulations results will not cover all Real	World	a data sets	; for additional insight the user may want to consult a stati	stician.
53					
1	1				

	A B C D E	F	G H I J K	L
1	UCL Statis	tics for Unc	ensored Full Data Sets	
2				
3	User Selected Options	10:15:00	foc - LCL SUOLO PROFONDO	
4	Date/Time of Computation ProUCL 5.121/02/2023 From File WorkSheet_a.xls	12:15:26	ICC - LCL SUCLO PROFONDO	_
5	Full Precision OFF			
6	Confidence Coefficient 95%			
8	Number of Bootstrap Operations 2000			
9	Trained of Bootestap opolations			
10				
11	C0			
12				
13		General	Statistics	
14	Total Number of Observations	18,00	Number of Distinct Observations	14,00
15			Number of Missing Observations	0
16	Minimum	-0,0210	Mean	-0,0112
125	Maximum	-0,00350	Median	-0,0115
CONPUNE DISCOULES SALVETE - MOGCEOLE OP - 600 28 48 - Professor - 40/03/2823 10:10	SD	0,00461	Std. Error of Mean	0,00109
185 186	Coefficient of Variation	-0,413	Skewness	-0,121
200				
2₽			GOF Test	
220	Shapiro Wilk Test Statistic	0,970	Shapiro Wilk GOF Test	
2 §	5% Shapiro Wilk Critical Value	0,897	Data appear Normal at 5% Significance Level	
2 4 €	Lilliefors Test Statistic	0,118	Lilliefors GOF Test	
250	5% Lilliefors Critical Value	0,202	Data appear Normal at 5% Significance Level	
26	Data appea	r Normal a	t 5% Significance Level	
28			- Diskib at a	
285	95% Normal UCL	suming ivori	mal Distribution	
29		-0.00929	95% UCLs (Adjusted for Skewness)	0.00042
30	95% Student's-t UCL	-0,00929	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	
390	Gam	ıma Statisti	cs Not Available	-0,00330
324			tics Not Available	
3M7				
35	Nonparame	tric Distribu	tion Free UCL Statistics	
3 81	Data appear to follow a D	Discernible	Distribution at 5% Significance Level	
30				
3 &	Nonpara	ametric Dis	tribution Free UCLs	
35	95% CLT UCL	-0,00939	95% Jackknife UCL	-0,00929
4€	95% Standard Bootstrap UCL	-0,00943	95% Bootstrap-t UCL	-0,00922
48	95% Hall's Bootstrap UCL	-0,00937	95% Percentile Bootstrap UCL	-0,00946
42	95% BCA Bootstrap UCL	-0,00953		
43	90% Chebyshev(Mean, Sd) UCL	-0,00792	95% Chebyshev(Mean, Sd) UCL	
44	97,5% Chebyshev(Mean, Sd) UCL	-0,00439	99% Chebyshev(Mean, Sd) UCL	-3,618E-4
45				
46			UCL to Use	
47	95% Student's-t UCL	-0,00929		
48	Note: Cuganations regarding the palestics of a 050/	IICI con o	ovided to hole the week to colect the most recommist. 25%	
49			ovided to help the user to select the most appropriate 95% tables. a size, data distribution, and skewness.	JCL.
50			a size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (200	06)
51			ts; for additional insight the user may want to consult a statis	
52 53			as, i.e. additional molgrit the door may want to consult a static	
54	Note: For highly negatively-skewed data, confid-	ence limits	(e.g., Chen, Johnson, Lognormal, and Gamma) may not b	oe e
55			de adjustments for positvely skewed data sets.	
56			· · ·	

Analisi di Rischio sanitaria e ambientale Pista Ciclabile Ivo Mancini Via Berlinguer, Loc. Stagno SITO LI 1148

Allegato 7 - File Risk Net

Allegato 7 File Risk Net 3.1.1 PRO

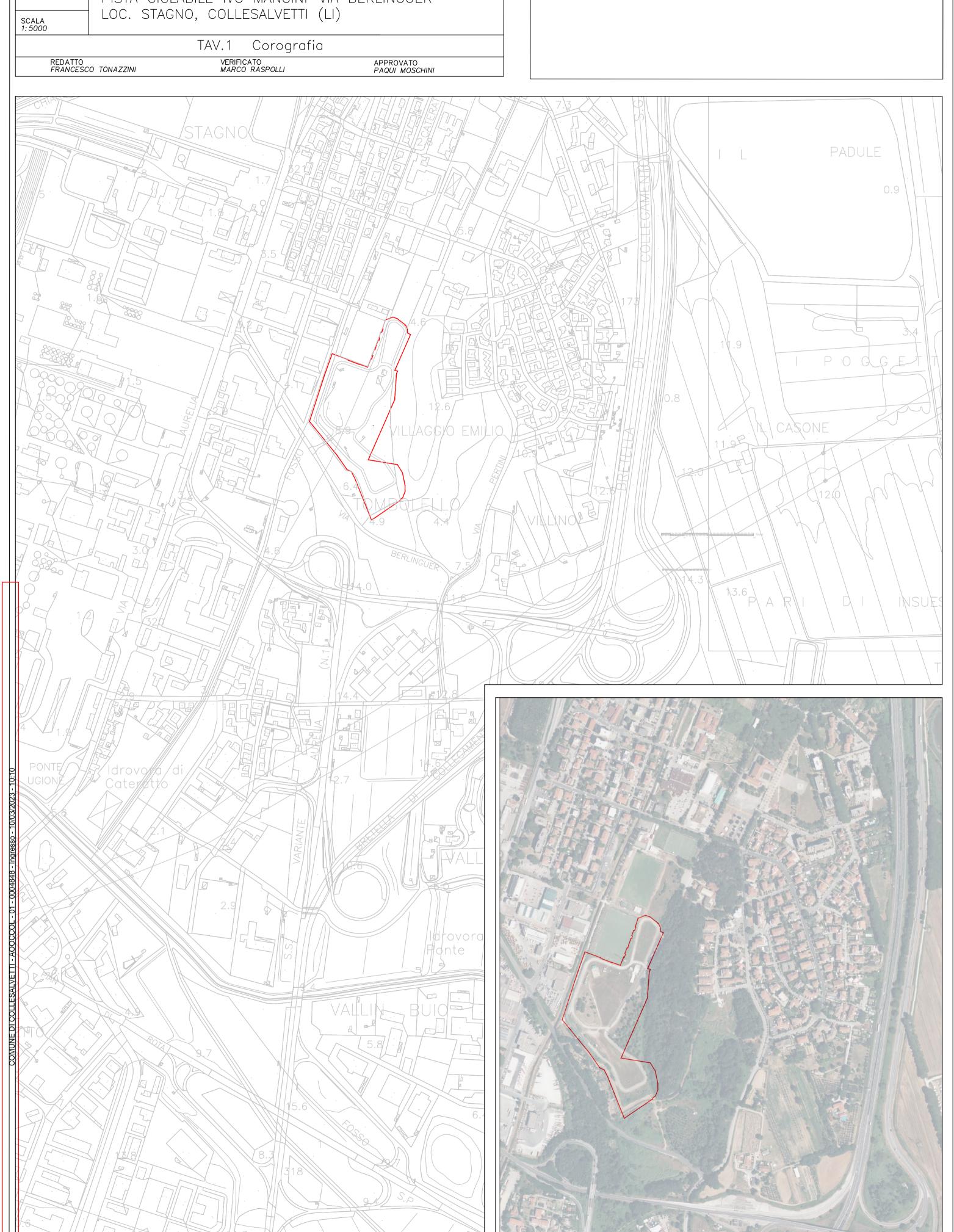
Tabella riassuntiva dei file su supporto informatico

Nome file	Descrizione
Pista ciclabile Sorg SS 1 POC.risknet	Sorgente: SS_1
Fista ciciabile 301g 33 1 FOC.TISKITET	Stima concentrazioni attese ai POC
Pista ciclabile Sorg SS 1 san.risknet	Sorgente: SS_1
rista ciciabile 301g 33 1 Sali. liskilet	Bersaglio: residente on-site
Pista ciclabile Sorg SS 1 scelta HC.risknet	Sorgente: SS_1
rista ciciabile 301g 33 1 scetta i ic.riskilet	Scelta della speciazione HC più conservativa
Pista ciclabile Sorg SS 2 POC.risknet	Sorgente: SS_2
rista ciciabile 301g 33 2 FOC.TISKITET	Stima concentrazioni attese ai POC
Pista ciclabile Sorg SS 2 san.risknet	Sorgente: SS_2
rista ciciabile 301g 33 2 Sall. liskilet	Bersaglio: residente on-site
Pista ciclabile Sorg SS 3 POC.risknet	Sorgente: SS_3
rista ciciabile 301g 33 3 FOC. Tiskilet	Stima concentrazioni attese ai POC
Pista ciclabile Sorg SS 3 san.risknet	Sorgente: SS_3
rista ciciabile 301g 33 3 Sall. liskilet	Bersaglio: residente on-site
Pista ciclabile Sorg SP 1 POC.risknet	Sorgente: SP_1
rista ciciabile 301g 3r 1 POC.IISKITET	Stima concentrazioni attese ai POC
Pista ciclabile Sorg SP 1 san.risknet	Sorgente: SP_1
i ista ciciabile soig of a sailliskilet	Bersaglio: residente on-site

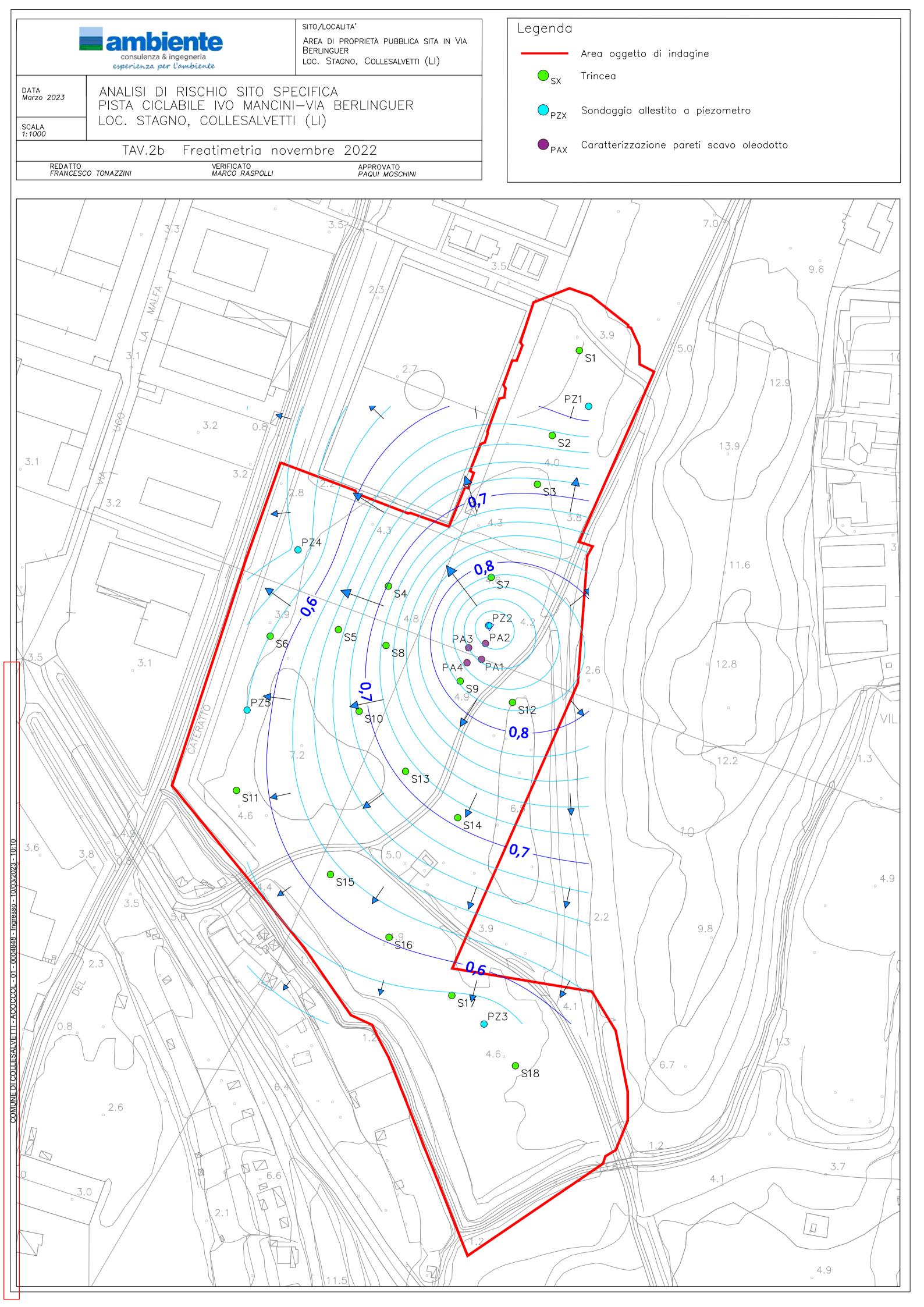
Analisi di Rischio sanitaria e ambientale Pista Ciclabile Ivo Mancini Via Berlinguer, Loc. Stagno SITO LI 1148

Tavole

consulenza & ingegneria esperienza per l'ambiente ANALISI DI RISCHIO SITO SPECIFICA DATA Febbraio 2023 SCALA 1: 5000 REDATTO FRANCESCO TONAZZINI


SITO/LOCALITA'


AREA DI PROPRIETÀ PUBBLICA SITA IN VIA BERLINGUER


LOC. STAGNO, COLLESALVETTI (LI)

PISTA CICLABILE IVO MANCINI-VIA BERLINGUER

Legenda Area oggetto di indagine

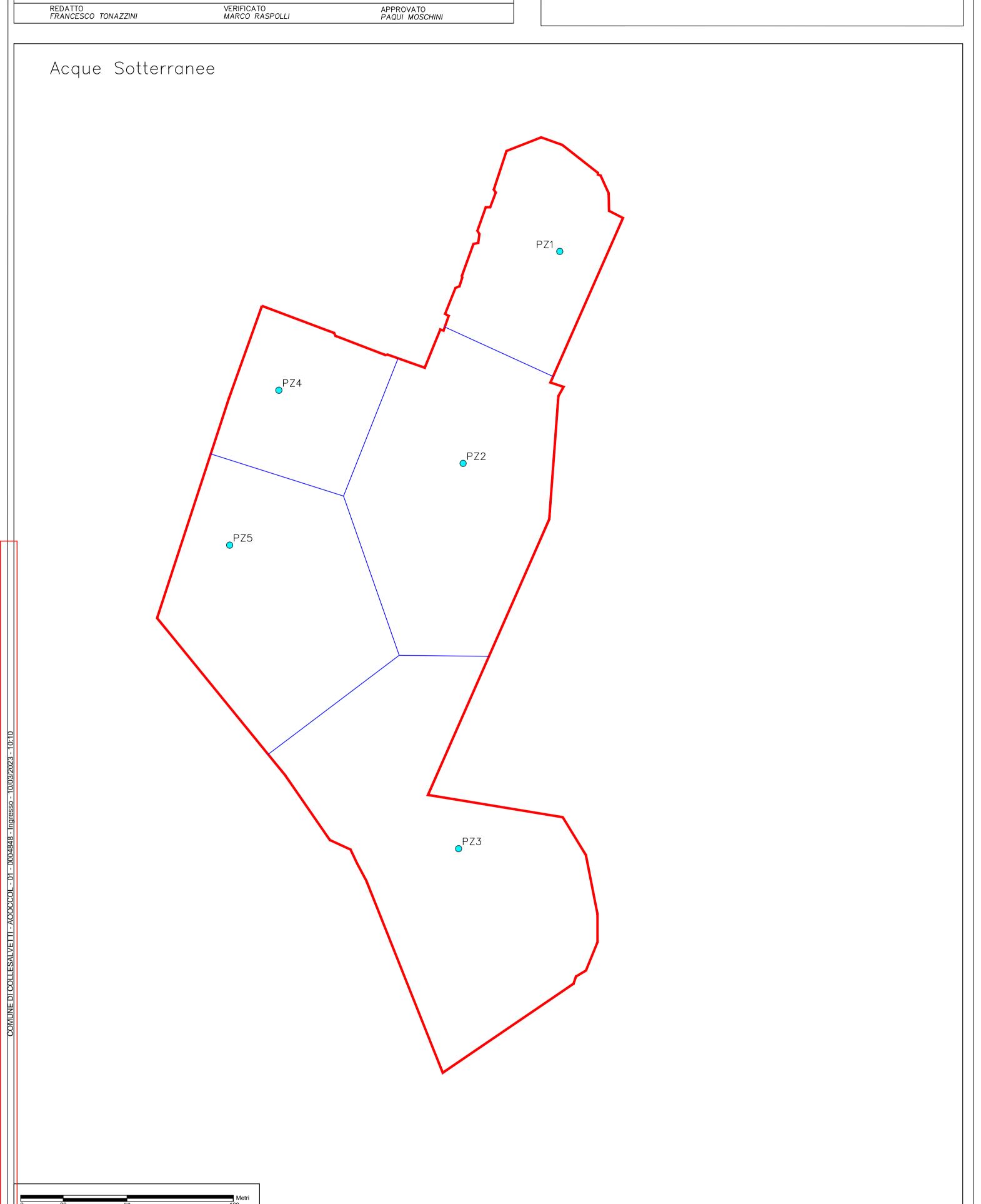
SCALA 1: GRAFICA SITO/LOCALITA'

Area di proprietà pubblica sita in Via Berlinguer

BERLINGUER
LOC. STAGNO, COLLESALVETTI (LI)

IALICI DI DICCILIO CITO CDECIFI

ANALISI DI RISCHIO SITO SPECIFICA
PISTA CICLABILE IVO MANCINI—VIA BERLINGUER
LOC. STAGNO, COLLESALVETTI (LI)


TAV.4 Poligoni di Thiessen GW

Legenda

Area oggetto di indagine

PZX Sondaggio allestito a piezometro

Poligoni di Thiessen

DATA *Marzo 2023*

SITO/LOCALITA'

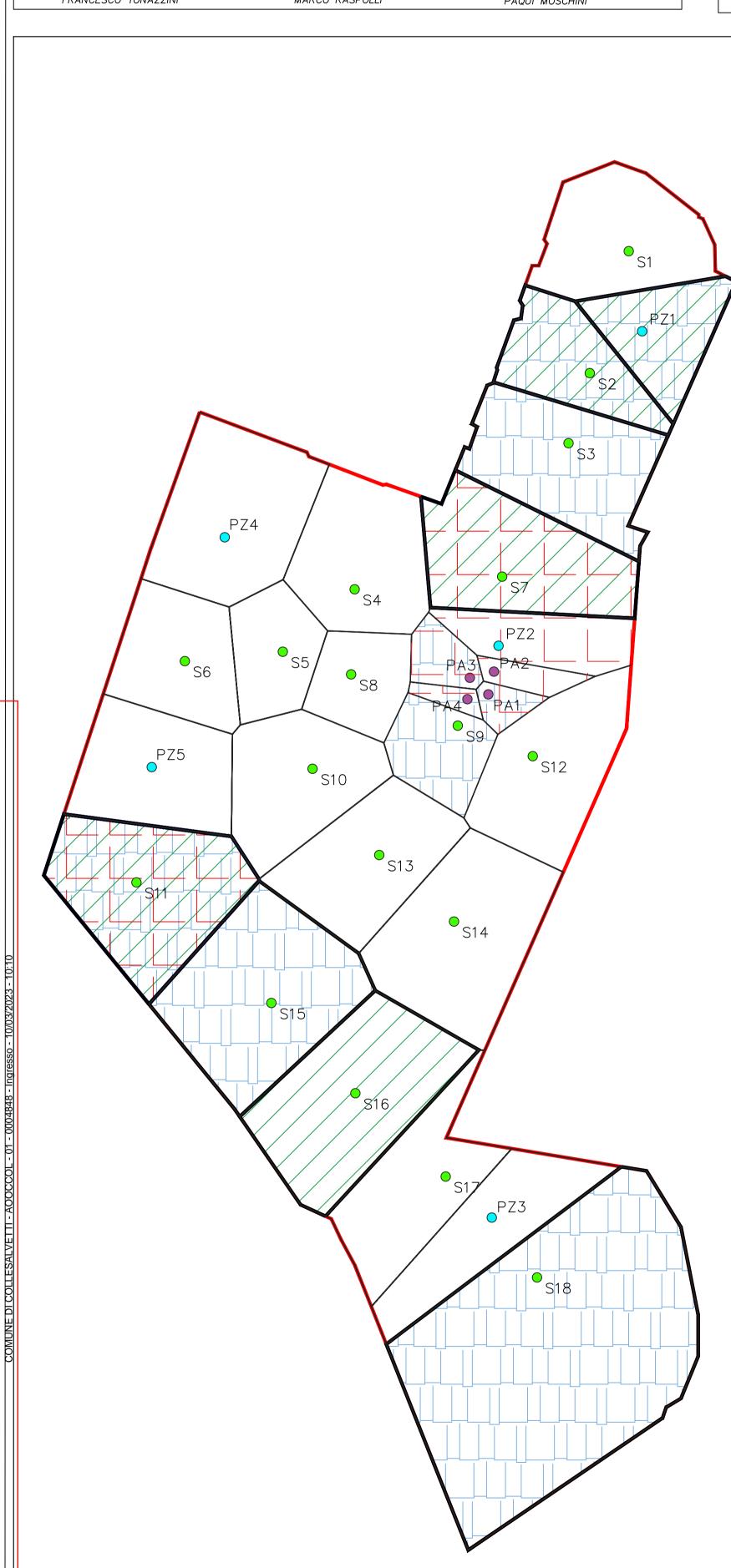
AREA DI PROPRIETÀ PUBBLICA SITA IN VIA BERLINGUER

LOC. STAGNO, COLLESALVETTI (LI)

ANALISI DI RISCHIO SITO SPECIFICA

PISTA CICLABILE IVO MANCINI-VIA BERLINGUER

LOC. STAGNO, COLLESALVETTI (LI) SCALA 1:1000


> Superamenti CSC Suolo Superficiale TAV.5

VERIFICATO MARCO RASPOLLI REDATTO FRANCESCO TONAZZINI

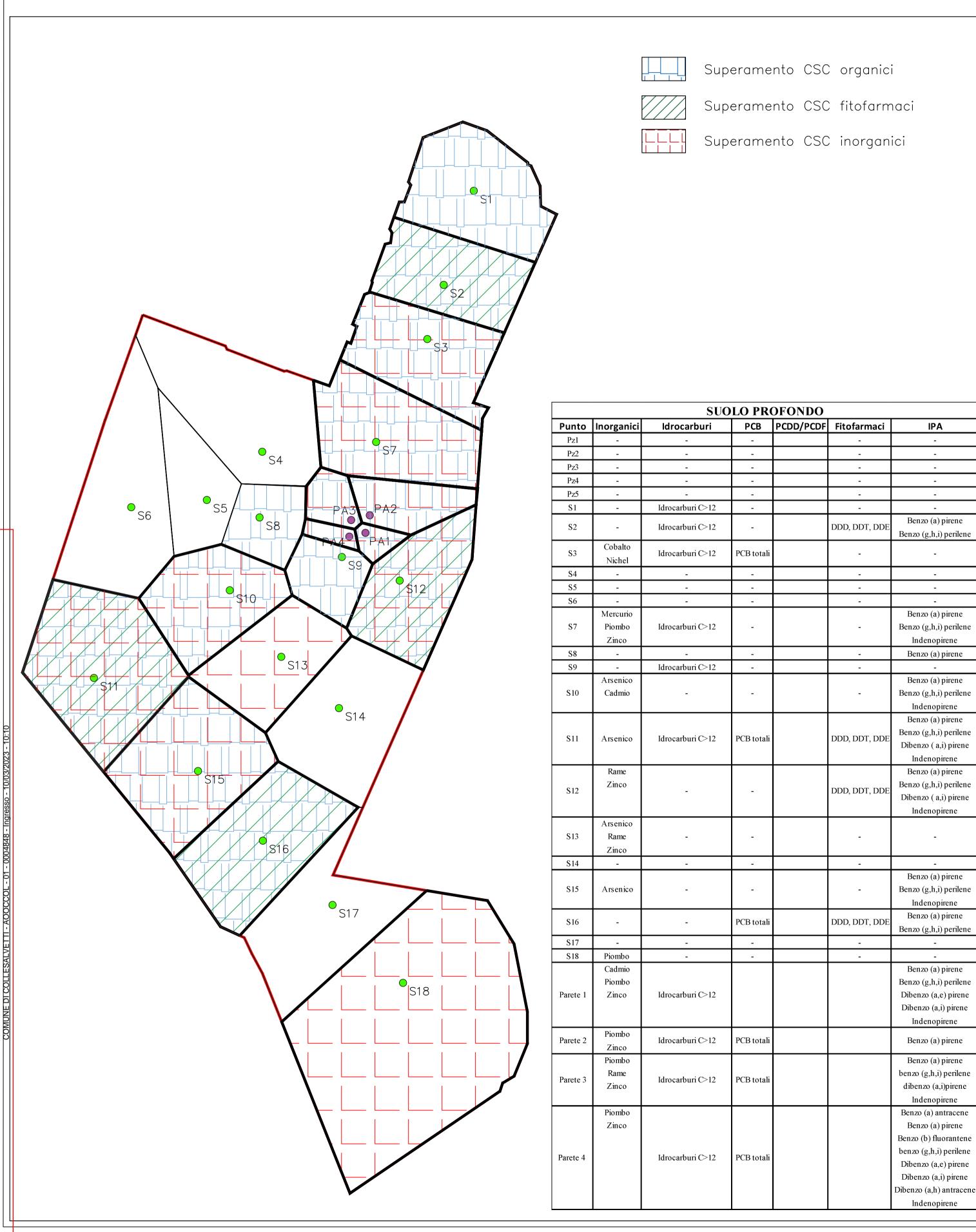
APPROVATO PAQUI MOSCHINI

Legenda Area oggetto di indagine Trincea SX PZX Sondaggio allestito a piezometro • PAX Caratterizzazione pareti scavo oleodotto

Poligoni di Thiessen

Superamento CSC organici Superamento CSC fitofarmaci

	Sup	erament	o CSC) inorgar	nici
		SUOLO	O SUPER	FICIALE	
Punto	Inorganici	Idrocarburi	PCB	Fitofarmaci	IPA
Pz1	-	-	-	DDD, DDT, DDE	Benzo (a) antracene Benzo (a) pirene Benzo (b) fluorantene Benzo (k) fluorantene Benzo (g,h,i) perilene Dibenzo (a,e) pirene Dibenzo (a,i) pirene Indenopirene
Pz2	Piombo Zinco	-	ı	-	-
Pz3	-	-	-	-	-
Pz4 Pz5	-	-	-	-	<u>-</u>
S1	-	-	-	-	-
S2	1	-		DDD, DDT, DDE	Benzo (a) antracene Benzo (a) pirene Benzo (b) fluorantene Benzo (k) fluorantene Benzo (g,h,i) perilene Dibenzo (a,l) pirene Dibenzo (a,i) pirene Dibenzo (a,h) antracene
S3	-	_	_	-	Indenopirene Benzo (a) pirene
S4	-	-	-	-	-
S5	-	-	-	-	-
S6	- Cadmio	-	-	- DDD DDT	-
S7	Piombo Zinco	-	-	DDD, DDT, DDE	-
S8	-	-	-	-	
S9	-	-	-	-	Benzo (a) antracene Benzo (a) pirene Benzo (b) fluorantene Benzo (g,h,i) perilene Dibenzo (a,e) pirene
					Dibenzo (a,h) antracene Indenopirene
S10	-	-	-	-	-
S11	Mercurio	-	-	DDD, DDT, DDE	Benzo (a) pirene Benzo (g,h,i) perilene Indenopirene
S12	-	-	-	-	-
S13 S14	-	-	-	-	<u>-</u>
S15	-	<u>-</u>		-	Benzo (a) pirene
S16	-	-	-	DDD, DDT, DDE	-
S17	-	-	_	- -	_
S18	-	-	•	-	Benzo (a) pirene Benzo (g,h,i) perilene Indenopirene
Parete 1	Piombo Zinco	Idrocarburi C>12	-	-	Benzo (a) pirene Benzo (g,h,i) perilene Dibenzo(a,e)pirene Indenopirene
Parete 2	Cadmio Piombo Zinco	-	-	-	-
Parete 3	Zinco	Idrocarburi C>12	PCB totali	-	Benzo (a) pirene Benzo (g,h,i) perilene Indenopirene
Parete 4	Nichel Piombo Zinco	-	-	-	Benzo (a) antracene Benzo (a) pirene Benzo (b) fluorantene Benzo (g,h,i) perilene Dibenzo (a,e) pirene Dibenzo (a,h) antracene Dibenzo (a,i) antracene Indenopirene
		-			



TAV.6

Legenda Area oggetto di indagine Trincea SX PZX Sondaggio allestito a piezometro Caratterizzazione pareti scavo oleodotto Poligoni di Thiessen

REDATTO FRANCESCO TONAZZINI	VERIFICATO MARCO RASPOLLI	APPROVATO PAQUI MOSCHINI

Superamenti CSC Suolo Profondo

AREA DI PROPRIETÀ PUBBLICA SITA IN VIA BERLINGUER

LOC. STAGNO, COLLESALVETTI (LI)

DATA Marzo 2023

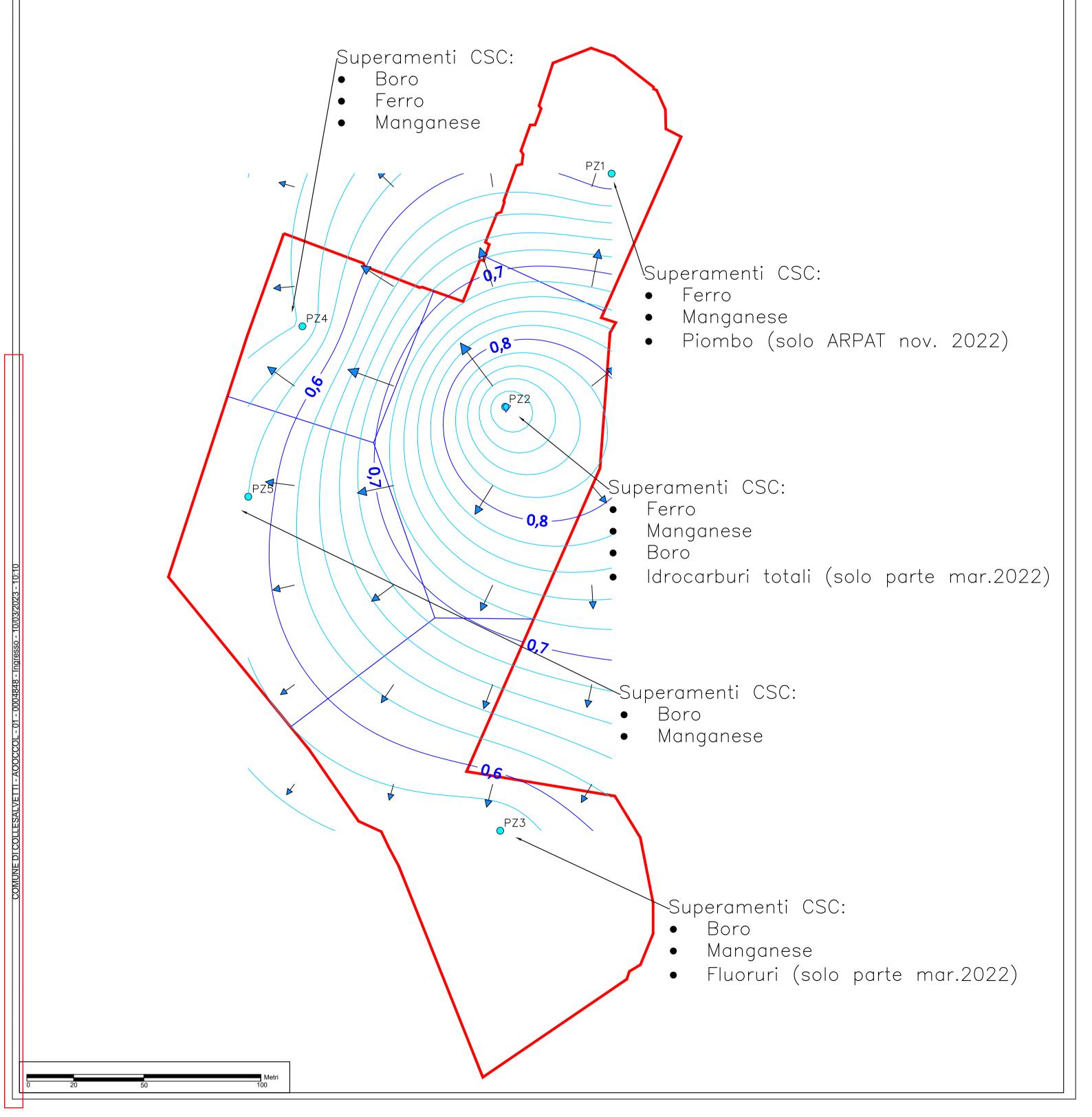
SCALA 1: GRAFICA

ANALISI DI RISCHIO SITO SPECIFICA

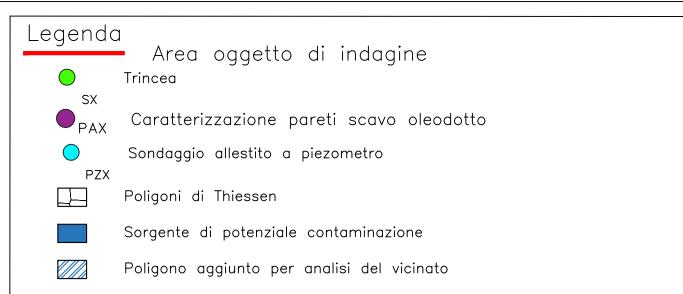
PISTA CICLABILE IVO MANCINI-VIA BERLINGUER

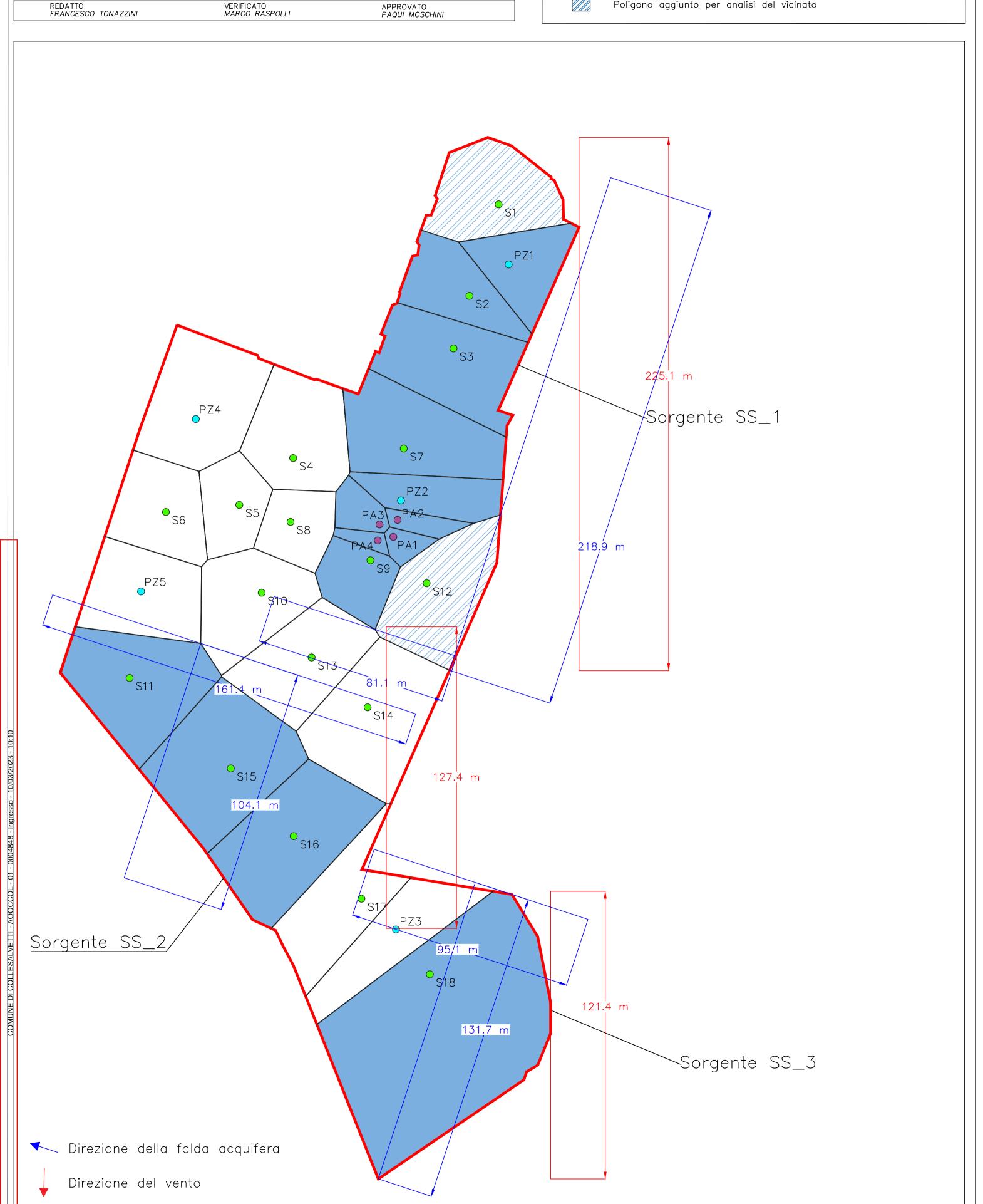
LOC. STAGNO, COLLESALVETTI (LI)

Superamenti CSC GW TAV.7


VERIFICATO MARCO RASPOLLI REDATTO FRANCESCO TONAZZINI

APPROVATO PAQUI MOSCHINI

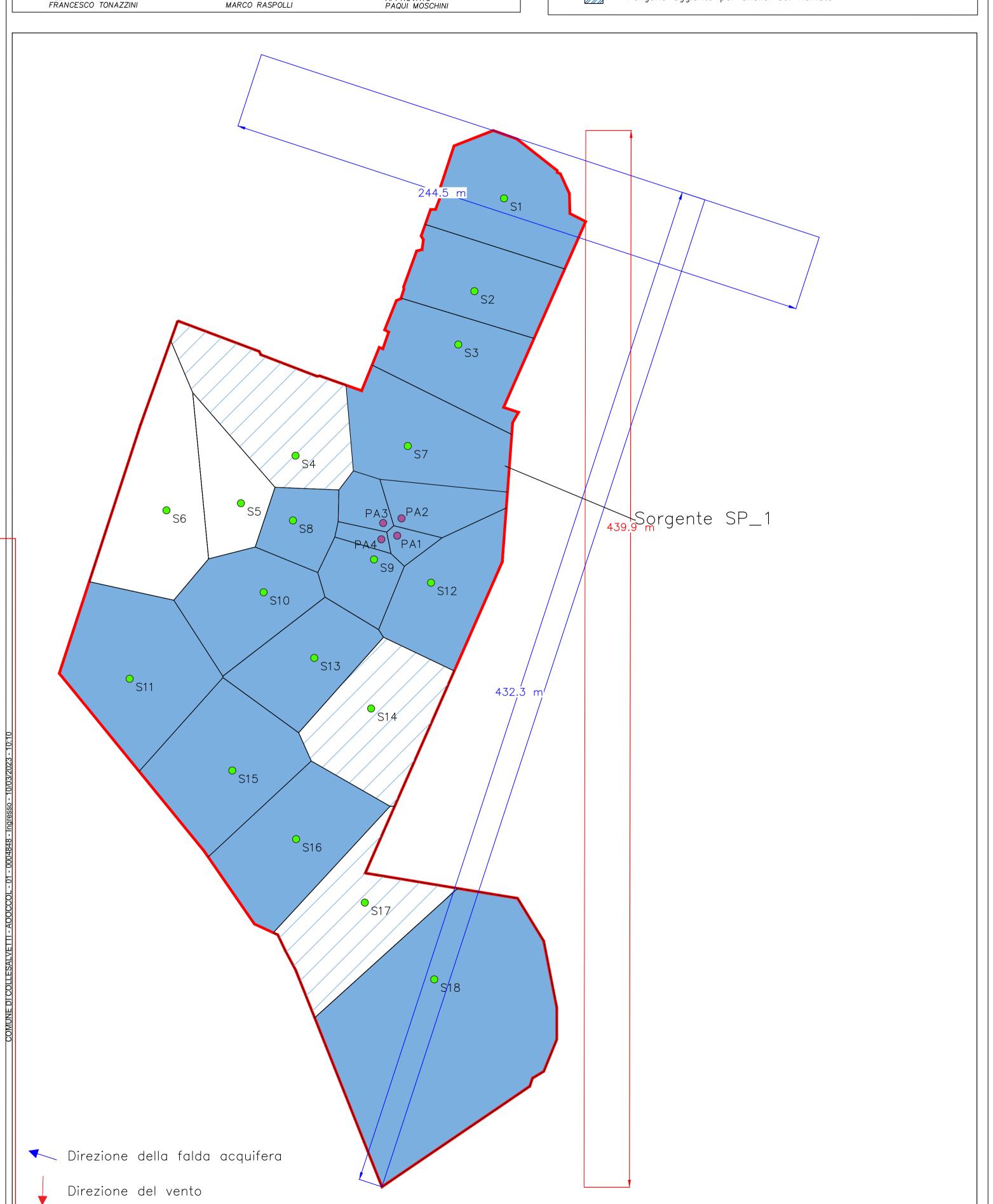

Legenda Area oggetto di indagine Sondaggio allestito a piezometro Poligoni di Thiessen


Acque Sotterranee

Risultati Acque sotterranee					ARPAT		ARPAT		ARPAT			ARPAT		ARPAT			ARPAT	
Descrizione		CSC	PZ1	PZ1	PZ1	P <i>Z</i> 2	P <i>Z</i> 2	PZ2	P <i>Z</i> 2	PZ3	PZ3	PZ3	PZ4	PZ4	PZ4	PZ5	PZ5	PZ5
Data campione			30.03.2022	24.11.2022	24.11.2022	30.03.2022	30.03.2022	24.11.2022	24.11.2022	30.03.2022	24.11.2022	24.11.2022	30.03.2022	30.03.2022	24.11.2022	30.03.2022	30.03.2022	24.11.2022
FLUORURI	μg/l	1500	369	383	0,39	411	< 500	475	0,39	2370	1780	1,9	234	< 500	352	523	520	550
BORO	μg/l	1000		650	609			1250	1012		1220	1282		2570	2740			1750
FERRO	μg/l	200	1170	3840	3183	550	897	53	62	140	34,6	116	124	244	37,6	149	114	25,8
MANGANESE	μg/l	50	1790	2490	3425	1180	978	1300	276	610	226	886	1420	1185	700	1240	871	1110
PIOMBO	μg/l	10	<1.0		23	<1.0	< 1			<1.0			<1.0	< 1		<1.0	< 1	
IDROCARBURI TOTALI	μg/l	350	<31	41	<50	1100	200	<31	<50	<31	66	<50	<31	< 50	<31	<31	< 50	<31

SCALA 1:1000

SITO/LOCALITA' AREA DI PROPRIETÀ PUBBLICA SITA IN VIA BERLINGUER


LOC. STAGNO, COLLESALVETTI (LI)

ANALISI DI RISCHIO SITO SPECIFICA DATA *Marzo 2023* PISTA CICLABILE IVO MANCINI-VIA BERLINGUER

LOC. STAGNO, COLLESALVETTI (LI)

Schematizzazione sorgenti Suolo profondo TAV.9

VERIFICATO MARCO RASPOLLI REDATTO FRANCESCO TONAZZINI APPROVATO PAQUI MOSCHINI Legenda Area oggetto di indagine Trincea SX Caratterizzazione pareti scavo oleodotto Sondaggio allestito a piezometro PZX Poligoni di Thiessen Sorgente di potenziale contaminazione Poligono aggiunto per analisi del vicinato

AREA DI PROPRIETÀ PUBBLICA SITA IN VIA BERLINGUER

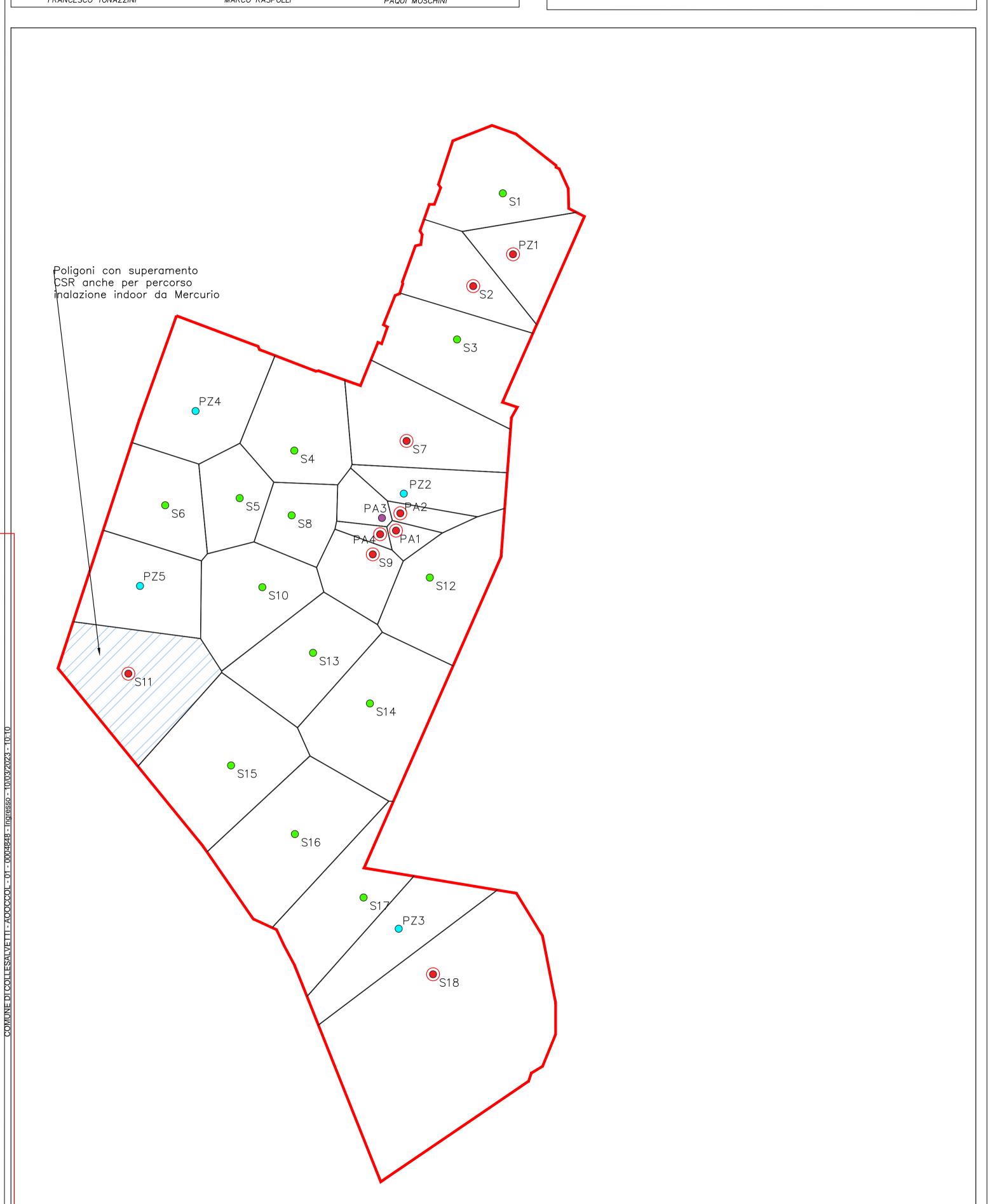
LOC. STAGNO, COLLESALVETTI (LI)

DATA *Marzo 2023*

ANALISI DI RISCHIO SITO SPECIFICA

PISTA CICLABILE IVO MANCINI-VIA BERLINGUER

LOC. STAGNO, COLLESALVETTI (LI) SCALA 1:1000


> Superamenti CSR suolo superficiale TAV.10

REDATTO FRANCESCO TONAZZINI

VERIFICATO MARCO RASPOLLI

APPROVATO PAQUI MOSCHINI

Legenda Area oggetto di indagine Trincea SX Caratterizzazione pareti scavo oleodotto O_{PZX} Sondaggio allestito a piezometro Trincea/sondaggio/parete con superamento delle CSR

Area di proprietà pubblica sita in Via Berlinguer

LOC. STAGNO, COLLESALVETTI (LI)

ANALISI DI RISCHIO SITO SPECIFICA

PISTA CICLABILE IVO MANCINI—VIA BERLINGUER LOC. STAGNO, COLLESALVETTI (LI)

SCALA 1: 1000

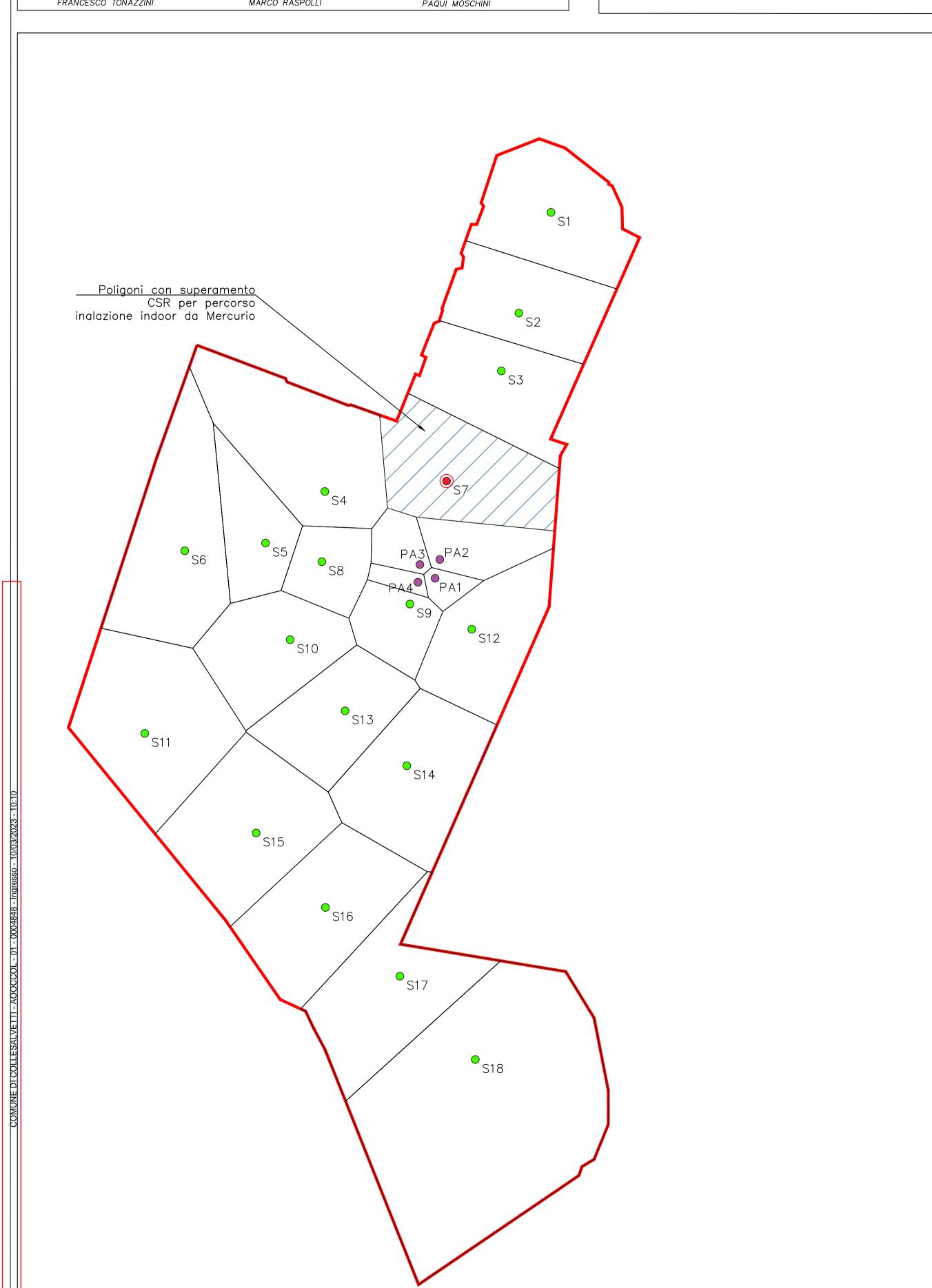
DATA *Marzo 2023*

TAV.11 Superamenti CSR Suolo Profondo

REDATTO FRANCESCO TONAZZINI VERIFICATO MARCO RASPOLLI

APPROVATO PAQUI MOSCHINI Legenda

Area oggetto di indagine


Trincea

SX

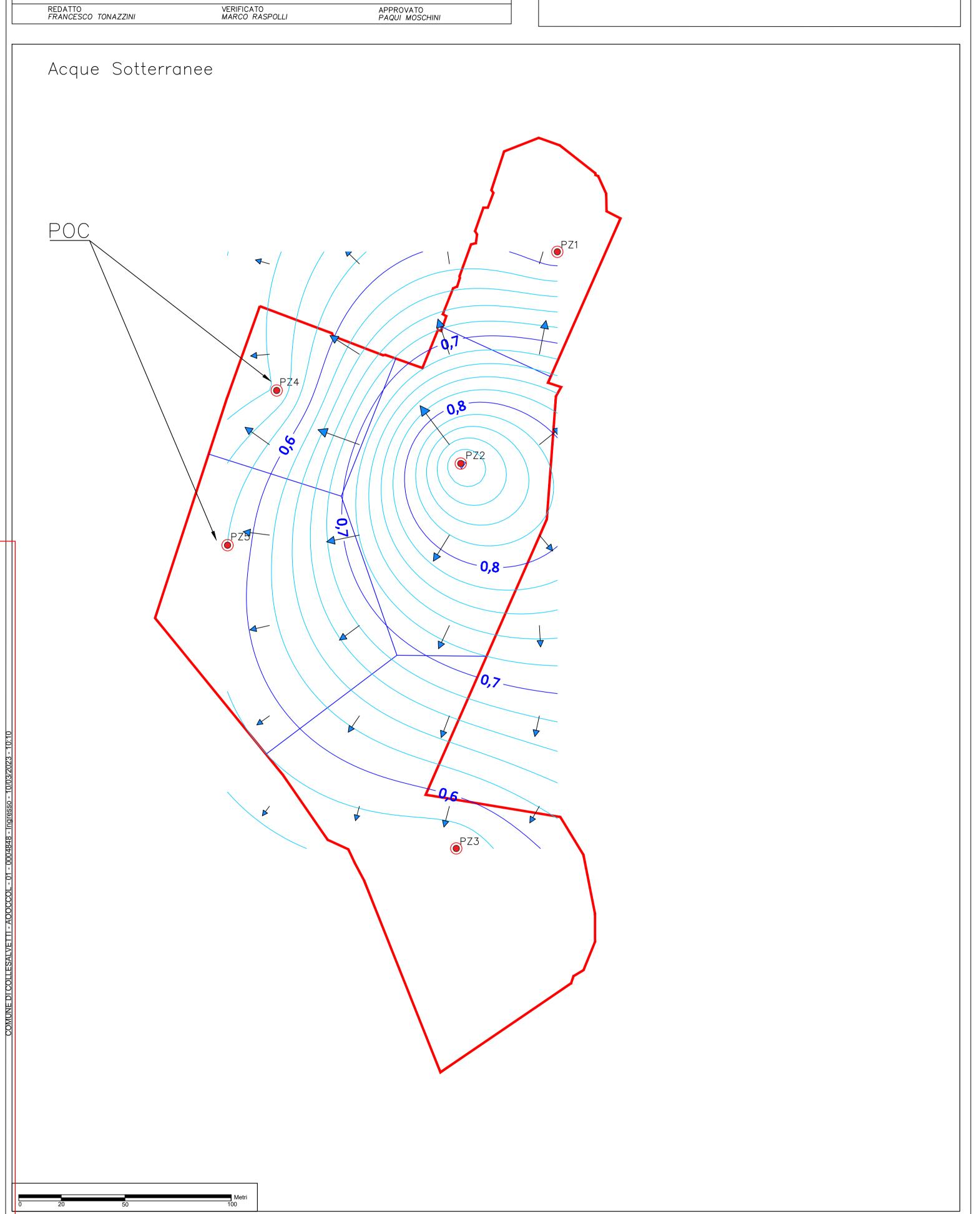
PAX

Caratterizzazione pareti scavo oleodotto

Trincea/parete con superamento delle CSR

AREA DI PROPRIETÀ PUBBLICA SITA IN VIA BERLINGUER

LOC. STAGNO, COLLESALVETTI (LI)


ANALISI DI RISCHIO SITO SPECIFICA DATA *Marzo 2023*

PISTA CICLABILE IVO MANCINI-VIA BERLINGUER LOC. STAGNO, COLLESALVETTI (LI)

SCALA 1: GRAFICA

TAV.12 Superamenti CSR GW

Legenda Area oggetto di indagine Sondaggio allestito a piezometro Poligoni di Thiessen Sondaggio allestito a piezometro con superamento CSR

AREA DI PROPRIETÀ PUBBLICA SITA IN VIA BERLINGUER

LOC. STAGNO, COLLESALVETTI (LI)

DATA *Marzo 2023*

SCALA 1:1000

ANALISI DI RISCHIO SITO SPECIFICA PISTA CICLABILE IVO MANCINI—VIA BERLINGUER

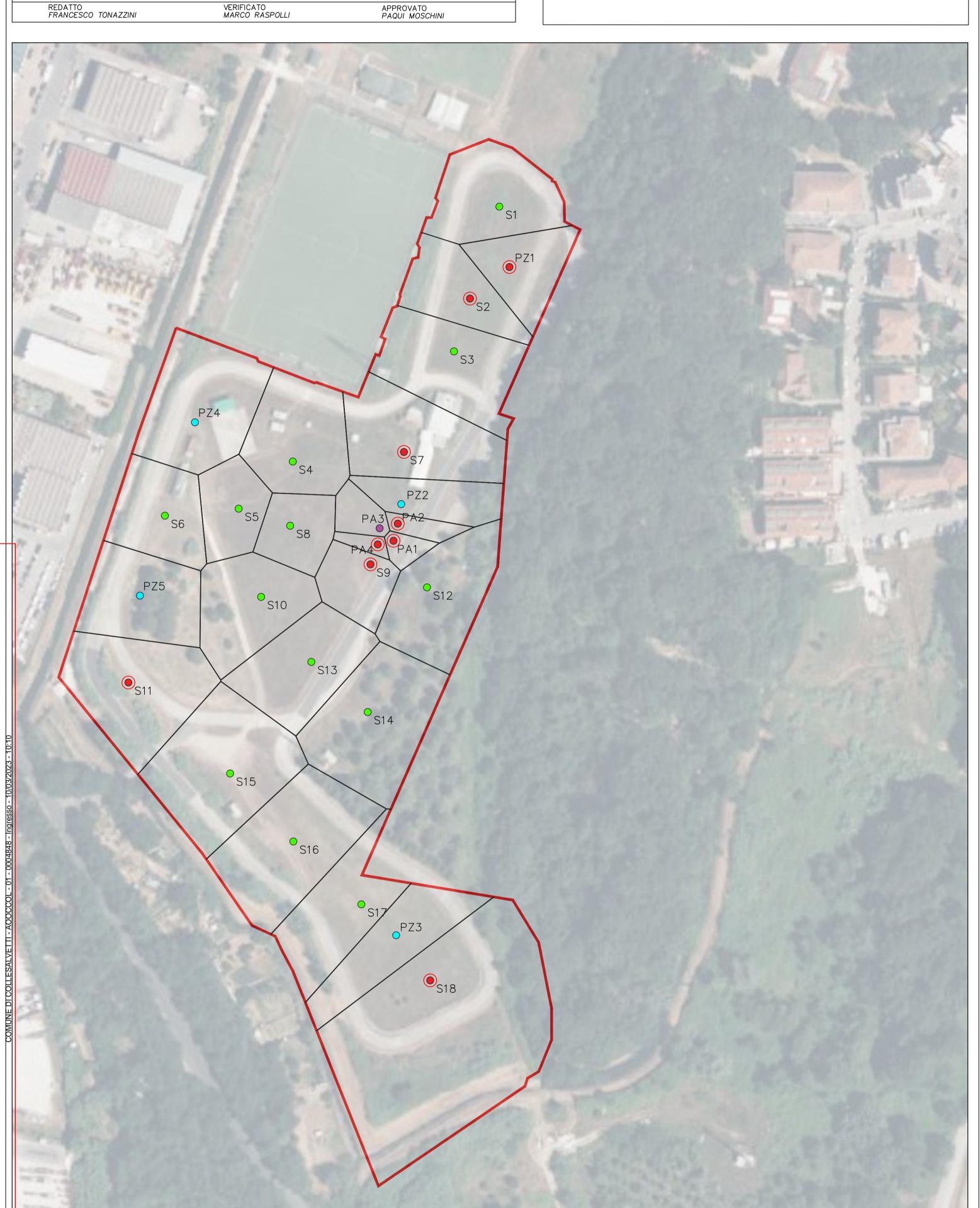
LOC. STAGNO, COLLESALVETTI (LI)

TAV.13 Punti oggetto di bonifica

VERIFICATO MARCO RASPOLLI REDATTO FRANCESCO TONAZZINI

Legenda

Area oggetto di indagine


SX

Trincea

Caratterizzazione pareti scavo oleodotto

Sondaggio allestito a piezometro

Trincea/sondaggio/parete oggetto di bonifica nel suolo superficiale

